Как сделать самодельный шокер. Самодельный мощный электрошокер своими руками

Электрошокер - отличное оружие для самообороны. Сегодня его может купить любое физическое лицо которому исполнилось 18 лет, это вполне легально! Шокер не требует дополнительных документов со стороны покупателя и его использование законно. Предназначен электрошокер для активной обороны от грабителей и хулиганов, но все не так просто. Дело в том, что закон нашей страны не разрешает нам, простым смертным носить электрошокеры с мощностью более 3 - х ватт. Напряжение шокера (длина дуги) не имеет никакого значения и предназначена только для пробоя одежды, от этого следует, что шокер с напряжением в несколько миллионов вольт в трудную минуту может оказаться просто игрушкой... Реально мощные шокеры используют только органы, если у вас имеется "полицейский " шокер, можете не читать эту статью, а всем остальным прошу разогреть паяльники и приготовить детали для девайса.

К вашему вниманию представляю конструкцию электрошокера с мощностью в 7 - 10 Ватт (зависит от источника питания), который вы сможете сделать своими руками. Конструкция была подобрана как самая простая для того, чтобы с ней справились даже новички, подбор деталей и материалов тоже доступны новичкам.

Преобразователь напряжения выполнен по схеме блокинг - генератора на одном транзисторе, использован полевой транзистор обратной проводимости типа IRF3705, что позволяет выжимать от источника питания "все соки", могут также использоваться транзисторы IRFZ44 или IRL3205, особой разницы почти нету. Также, нужен резистор на 100 Ом с мощностью 0.5-1 Ватт (я использовал резистор на 0.25 ватт, но крайне не советую повторять мою ошибку).

Конечным и самым главным элементом преобразователя является повышающий трансформатор. Для трансформатора был использован сердечник от импульсного блока питания от DVD-проигрывателя. Сначала снимаем все старые обмотки с трансформатора и мотаем новые. Первичная обмотка содержит 12 витков с отводом от середины, то есть сначала мотаем 6 витков, затем делаем, провод скручиваем и в том же направлении на каркасе мотаем еще 6 витков, диаметр провода первичной обмотки 0.5 – 0.8 мм. После этого первичную обмотку изолируем 5 - ю слоями прозрачного скотча и мотаем вторичную. И первичную и вторичную обмотку нужно мотать в одинаковом направлении. Вторичная обмотка содержит 600 витков провода с диаметром 0.08 – 0.1 мм. Но провод мотаем не навалом, а по специальной технологии!
Через каждые 50 витков ставим изоляцию скотчем (в 2 слоя), таким образом трансформатор будет надежно защищен от пробоев в высоковольтной обмотке. Трансформатор намотанный по такой технологии не нуждается в заливке, хотя на всякий случай его можно залить эпоксидной смолой. К выводам вторичной обмотки припаиваем многожильный изолированный провод. Транзистор желательно установить на небольшой алюминиевый теплоотвод.

После того, как преобразователь готов, его нужно испытать. Для этого собираем схему без высоковольтной части, на выходе трансформатора должен быть "жгучий ток", если он есть значит все работает. Далее, нужно спаять умножитель напряжения. Керамические конденсаторы имеют емкость 4700 пикофарад, емкость не критична, главное подобрать конденсаторы с напряжением не менее 3 киловольт. При уменьшении емкостей конденсаторов, частота разрядов увеличивается, но падает мощность шокера, при повышении емкости частота импульсов снижается, взамен возрастает мощность шокера. Диоды в умножителе нужны высоковольтные типа КЦ106, их можно достать разломав умножитель советского телевизора или просто купить на радио рынке.

Далее, соединяем умножитель к преобразователю по схеме и включаем шокер, дуга должна быть 1 - 2 см (если использовать все номиналы, которые указаны в схеме). Шокер издает громкие хлопки с частотой 300 - 350 Герц.

В качестве источника питания можно использовать литий ионные АКБ от мобильных телефонов с емкостью от 600 мА, возможно также применение никелевых аккумуляторов с напряжением 1.2 вольт, в моей конструкции были использованы четыре никель - металл - гибридные батарейки с емкостью 650 мА, за счет мощного полевого транзистора батарейки работают под сильной нагрузкой (близко к КЗ), но тем не менее их емкости хватает на 2 минуты постоянной работы шокера, а это согласитесь очень много для такого компактного и мощного электрошокера!

Монтаж - выполняется в любом удобном пластмассовом корпусе (у меня к счастью под рукой оказался подходящий корпус от старого электрошокера Оса). Высоковольтную часть схемы нужно покрыть силиконом (для надежности). Штыками послужит обрезанная вилка, гвозди или шуруп. Электрошокер необходимо дополнить выключателем и кнопкой без фиксации, это нужно для избегания самовключения в кармане.

В конце, несколько слов о параметрах шокера - напряжение на разрядниках свыше 10 киловольт, пробой одежды 1.5 - 2 см, средняя мощность 7 Ватт, шокер также дополнен встроенным зарядным устройством и светодиодным фонариком, схема зарядного устройства взята от китайского светодиодного фонарика. Выключатель имеет три положения, светодиод к источнику питания нужно подключить через резистор 10 Ом (чтобы не спалить светодиод).

Данный шокер получился достаточно компактным за счет умножителя и вполне подойдет для наших любимых дам. По сравнению с заводскими электрошокерами, которые продают в магазинах, наш шокер гораздо мощнее, а если все - же хотите поднять мощность, то можно повысить питание до 7.2 вольт, т.к. от емкости батареек зависит тоже очень многое.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
MOSFET-транзистор

IRL3705N

1 IRFZ44 или IRL3205 В блокнот
Диод

КЦ106Б

2 В блокнот
Резистор

100 Ом

1 0.5-1 Ватт В блокнот
Конденсатор 4700пФ 5кВ 2 В блокнот
SW1 Выключатель 1

Идея создания электрошокера повышенной эффективности появилась у меня после испытания на себе нескольких подобных устройств промышленного изготовления. В ходе испытаний выяснилось, что они лишают противника боеспособности только после 4...8 секунд воздействия, и то если повезет:) Нужно ли говорить, что в результате реального применения такой шокер скорее всего окажется в заднем месте владельца.

Инфа: наше законодательство разрешает для простых смертных шокеры с выходной мощностью не более 3 Дж/сек (1 Дж/сек = 1 Вт), в то же время для работников УВД разрешены девайсы мощностью до 10 Вт. Но даже 10 ватт недостаточно для эффективной нейтрализации противника; американцы в ходе экспериментов на добровольцах убедились в крайней неэффективности шокеров мощностью 5...7 Вт, и решили создать девайс, который бы конкретно гасил противника. Такой девайс создали: "ADVANCED TASER M26" (одна из модификаций "AirTaser" одноименной фирмы).

Устройство создано по EMD-технологии, а проще говоря имеет увеличенную выходную мощность. Конкретно - 26 ватт (что называется, "почувствуйте разницу":)). Вообще же существует еще одна модель этого девайса - М18, мощностью 18 ватт. Это обусловлено тем, что тэйзер - дистанционный шокер: при нажатии на спуск из картриджа, вставленного в переднюю часть устройства, выстреливаются два зонда, за которыми тянутся проводки. Зонды летят не параллельно друг другу, а расходятся под небольшим углом, за счет чего на оптимальной дистанции (2...3 м) расстояние между ними становится 20...30 см. Понятно, что если зонды попадут куда-нибудь не туда, может получится кердык. Поэтому и выпустили устройство меньшей мощности.

Сначала я делал электрошокеры, по эффективности аналогичные промышленым (по незнанию:). Но когда узнал информацию, приведенную выше, то решил разработать РЕАЛЬНЫЙ электрошокер, достойный называтся ОРУЖИЕМ самообороны. К слову сказать, кроме электрошокеров есть еще ПАРАЛИЗАТОРЫ, но они вообще не рулят, т.к парализуют мышцы только в зоне контакта, причем эффект достигается далеко не сразу, даже при большой мощности.

Выходные параметры МегаШокера частично заимствованы у "ADVANCED TASER M26". По имеющимся данным, девайс генерирует импульсы с частотой повторения 15...18 Hz и энергией 1,75Дж при напряжении 50Kv (т.к. чем ниже напряжение, тем выше ток при той же мощности). Поскольку МегаШокер - все-таки контактное устройство, а также из заботы о собственном здоровье:), было решено сделать энергию импульса равной 2...2,4Дж, а частоту их следования - 20...30 Hz. Это при напряжении 35...50 киловольт и максимальном расстоянии между электродами (не менее 10 см).

Схема, правда, получилась несколько сложноватая, но тем не менее:

Схема: На микросхеме DA1 собран управляющий генератор (ШИМ контроллер), на транзисторах Q1, Q2 и трансформаторе Т1 - преобразователь напряжения 12v --> 500v. Когда конденсаторы С9 и С10 заряжаются до 400...500 вольт, срабатывает пороговый узел на элементах R13-R14-C11-D4-R15-SCR1, и через первичную обмотку Т2 проходит импульс тока, энергия которого вычисляется по формуле 1.2 (Е - энергия (Дж), С - емкость С9 + С10(мкФ), U - напряжение (в)). При U = 450v и С = 23 мкФ энергия будет 2,33 Дж. Резюком R14 устанавливается порог срабатывания. Конденсатор С6 или С7 (в зависимости от положения переключателя S3) - ограничивает мощность устройства, иначе она будет стремится к бесконечности, и схема сгорит.

Конденсатор С6 обеспечивает максимальную мощность ("МАХ"), С7 - демонстрационную ("DEMO"), которая позволяет любоватся электроразрядом без риска спалить устройство и/или посадить аккумулятор:) (при включении режима "DEMO" также надо выключить S4). Емкость С6 и С7 рассчитывается по формуле 1.1, или просто подбирается (для мощности 45 ватт при частоте 17 KHz емкость будет около 0,02 мкФ). HL1 - люминесцентная лампа (ЛБ4, ЛБ6 или аналогичные (С8 подбирается)), ставится для маскировки - чтобы девайс был похож на навороченный фонарь и не вызывал подозрений у различного вида работников милициии других личностей (а то могут отобрать, у меня был случай - отобрали похожее устройство). Ессно, без лампы можно обойтись. Элементы R5-C2 определяют частоту генератора, при указанных номиналах f = ~17KHz. Ризюк R11 ограничивает выходное напряжение, вообще без него можно обойтись - просто присоединить R16-С5 к корпусу. Диод D1 защищает схему от повреждения при подключении в неправильной полярности. Предохранитель - на всякий противопожарный (например: если где-нить замкнет - может рвануть аккумулятор (были случаи)).

Теперь по сборке устройства: можно собрать все устройство на макетной плате, но рекомендуется спаять импульсную схему (С9-С10-R13-R14-C11-D4-R15-SCR1) навесным монтажом, при этом провода, соединяющие С9-С10, SCR1 и Т2 должны быть как можно короче. Это же касается элементов Q1, Q2, C4 и T1. Трансформаторы Т1 и Т2 следует расположить подальше друг от друга.

Т1 наматывается на двух сложенных вместе кольцевых сердечниках из М2000НМ1, типоразмер К32*20*6. Сначала наматывается обмотка 3 - 320 витков ПЭЛ 0,25, виток к витку. Обмотки 1 и 2 содержат по 8 витков ПЭЛ 0,8...1,0. Наматываются они одновременно в два провода, витки следует равномерно распределить по магнитопроводу.

Т2 наматывается на сердечнике из трансформаторных пластин. Пластины нужно изолировать друг от друга пленкой (бумагой, скотчем и т.д.) Площадь сечения сердечника должна быть не меньше 450 квадратных миллиметров. Сначала наматывается обмотка 1 - 10...15 витков провода ПЭЛ 1,0...1,2. Обмотка 2 содержит 1000...1500 витков и наматывается слоями виток к витку каждый слой намотки изолируется несколькими слоями скотча или конденсаторной пленки (которую можно добыть, поломав сглаживающий кондер от ЛДС светильника. Потом это все заливается эпоксидной смолой. Внимание - первичную обмотку нужно тщательно изолировать от вторичной! А то может получится какая-нибудь гадость (девайс может выйти из строя, а может долбануть током владельца. Причем долбануть неХило...). Выключатель S1 - типа предохранитель (при ТАКОЙ мощности осторожность не повредит), S2 - кнопка включения, оба выключателя должны быть рассчитаны на ток не менее 10А.

Отличительная особенность схемы в том, что каждый может настроить ее для себя (в смысле для противника:) Выходная мощность устройства может быть в пределах от 30 до 75 ватт (делать меньше 30, ИМХО, нецелесообразно). А больше 75 - просто плохо, т.к. при дальнейшем увеличении мощности эффективность будет не намного больше, а риск значительно возрастет. Ну, и габариты устройства получатся немного того.). Выходное напряжение - 35...50 тыс. вольт. Частота разрядов должна быть не менее 18...20 в секунду. Рекомендуемые параметры - 40 ватт, энергия одиночного импульса 1,75Дж при напряжении 40Kv. (если понизить напряжение, можно уменьшить и энергию импульса, эффективность останется такой же. 1,75Дж при 40Kv будет примерно как 2,15Дж при 50Kv. Но делать напряжение меньше 35 Kv нецелесообразно, поскольку тогда будет мешать сопротивление кожи, т.е. ток в импульсе окажется недостаточным).

Лучшим оружием для защиты и самообороны считается электрошок, не требующий лицензии и регистрации в органах МВД. Электрошокер может приобрести любой желающий по достижении 18-ти летнего возраста, а благодаря компактному размеру и легкому весу шокер можно носить в кармане или в женской сумочке.

Типовой электрошокер состоит из нескольких узлов - преобразователя (1), конденсатора (2), разрядника (3) и трансформатора (4). Все ето вы видити на картинке ниже. Действует оно тоже нехитро. Конденсатор периодически разряжается на трансформатор, производя при этом разряд искры на его выходе. Казалось бы очень просто, но как показала практика тут есть скрытая хитрось (© fulminat) и скрыта она именно в этом самом трансформаторе. В домашних уловиях практически невозможно сделать так, чтобы он правильно передавал импульс и был достаточно эффективен, для этого нужны специальные материалы, оборудование, а главное - расчеты, которые держатся в большом секрете - в сети вы ничего не найдете по этой теме. К тому же трансформатор имеет чисто конструктивные ограничения, которые не позволяют передавать через него мощные одиночые импульсы, необходимые нам.


Для наилучшего результата мотать нужно слоями, прокладывая между ними тонкую изоленту. Таким образом у вас должно получится 5-6 слоев. Если вам повезет достать провод ПЭЛШО просто мотайте его внавал, без всякой изоляции, периодически капнув немного машинного масла . К концам провода полезно приделать тонкие многожильные выводы для большей надежности.

ВЫХОДНОЙ ТРАНСФОРМАТОР

Теперь нужно найти ферритовый стержень диаметром около 10мм и длинной около 50. Нам нужен феррит 2000НМ, для этих целей подойдет трансформатор строчной развертки от отечественного телевизора. Нужно снять с него все лишнее. Затем оккуратно расколите его как показано на рисунке. Если строчник из небольших половинок то их можно склеить суперклеем для получения более длинного стержня. Для обработки феррита нужно применить точило (наждачный круг) чтобы в итоге получился круглый стержень диаметром около 10мм и длинной около 50. Процесс очень тяжелый, во время него вы сможете почуствовать в полной мере работником угольной шахты:-D Вместо стержня можно использовать множество маленьких феритовых колечек склееных между собой - некоторым их проще купить, а делаются они тоже из феррита 2000НМ:-)

Страницы: [1 ]

Среди средств самозащиты электрошоковые устройства (ЭШУ) - не на последнем месте, особенно по силе психологического воздействия на злоумышленников. Однако и стоимость имеют немалую, что побуждает радиолюбителей к созданию электрошокера своими руками их аналогов.

Не претендуя на сверхоригинальность и суперновизну идей, предлагаю свою разработку, повторить которую под силу любому, кто хотя бы раз в жизни имел дело с намоткой трансформатора и монтажом наипростейших устройств типа детекторного радиоприёмника с усилителем на одном - двух транзисторах.

Основу предлагаемого мною электрошокера своими руками составляют (рис. 1а) транзисторный генератор, преобразующий постоянное напряжение от источника электропитания типа гальванической батареи «Крона» («Корунд», 6PLF22) или аккумулятора «Ника» в повышенное переменное, с типовым умножителем U. Очень важным элементом ЭШУ является самодельный трансформатор (рис. 1б и рис. 2). Магнитопроводом для него является ферритовый сердечник диаметром 8 и длиной 50 мм. Такой сердечник можно отколоть, например, от магнитной антенны радиоприёмника, предварительно надпилив исходный по окружности краем абразивного камня . Но эффективнее работает трансформатор, если феррит - от телевизионного ТВС. Правда, в этом случае придётся из базового П-образного магнитопровода вытачивать цилиндрический стержень требуемых размеров.

Трубкой-основой каркаса для размещения на нём трансформаторных обмоток служит 50-мм отрезок пластмассового корпуса от уже отработавшего своё фломастера, внутренний диаметр которого соответствует вышеназванному ферритовому стержню. Щёчки размером 40x40 мм вырезают из 3-мм листа винипласта или оргстекла. С трубкой-отрезком корпуса фломастера их накрепко соединяют, предварительно смазав посадочные места дихлорэтаном.

Для трансформаторных обмоток используется в данном случае медный провод в эмалевой высокопрочной изоляции на основе винифлекса. Первичная 1 содержит 2x14 витков ПЭВ2-0.5. У обмотки 2 их почти вдвое меньше. Точнее, в ней - 2x6 витков того же провода. Зато высоковольтная 3 имеет 10 000 витков более тонкого ПЭВ2-0,15.

В качестве межслойной изоляции вместо плёнки из политетрафторэтилена (фторопласта) или полиэтилентерефталата (лавсана), обычно рекомендуемых для таких обмоток, вполне приемлемо использование 0,035-мм межэлектродной конденсаторной бумаги. Ею целесообразно запастись заранее: например, извлечь из 4-микрофарадных ЛСЕ1-400 или ЛСМ-400 от установочной старой арматуры под лампы дневного света, давно выработавшей, казалось бы, свой ресурс, и разрезать точно по рабочей ширине каркаса будущего трансформатора.

После каждых трёх «проволочных» слоёв в авторском варианте широкой кистью непременно выполнялась «промазка» получающейся обмотки эпоксидным клеем, слегка разведённым ацетоном (чтобы «эпоксидка» была не очень вязкой) и в 2 слоя прокладывалась конденсаторнобумажная изоляция. Далее, не дожидаясь отвердения, намотка продолжалась.

Во избежание обрыва провода вследствие неравномерности вращения каркаса при намотке, ПЭВ2-0.15 пропускался через кольцо. Последнее висело на пружине из стальной проволоки диаметром 0,2 - 0,3 мм, несколько оттягивая провод кверху. Между высоковольтной и остальными обмотками устанавливалась антипробойная защита - 6 слоёв той же конденсаторной бумаги с «эпоксидкой».

Концы обмоток припаяны к штырькам, пропущенным через отверстия в щёчках. Однако выводы можно сделать, не разрывая провода обмотки, из того же ПЭВ2, складывая в 2, 4, 8 раз (в зависимости от диаметра провода) и скручивая их.

Готовый трансформатор обматывают одним слоем стеклоткани и заливают эпоксидной смолой. Выводы обмоток при монтаже прижимают к щёчкам и укладывают с максимальным разведением концов друг от друга (особенно у высоковольтной обмотки) в соответствующий отсек корпуса. В результате даже при 10-минутной работе (а более длительного непрерывного использования защитному электрошокеру своими руками и не требуется) пробои у трансформатора исключаются.

В изначальном варианте конструкции генератор ЭШУ разрабатывался с ориентировкой на применение транзисторов КТ818. Однако замена их на КТ816 с любым буквенным индексом в наименовании и установка на небольшие пластинчатые радиаторы позволила уменьшить вес и размеры всего устройства. Тому же способствовало и использование в умножителе напряжения хорошо зарекомендовавших себя диодов КЦ106В (КЦ106Г) с высоковольтными керамическими конденсаторами К15-13 (220 пФ, 10 кВ). В итоге удалось практически всё уместить (без учёта предохранительных усов и штырей разрядника) в пластмассовый корпус типа мыльницы размером 135x58x36 мм. Вес защитного ЭШУ в сборе - около 300 г.

В корпусе между трансформатором и умножителем, а также у электродов со стороны пайки необходимы перегородки из достаточно прочной пластмассы - как мера по укреплению конструкции в целом и предосторожность, позволяющая избежать проскакивания искры с одного радиоэлемента монтажа на другой, а также как средство предохранения самого трансформатора от пробоев. С наружной части под электродами крепятся усы из латуни для уменьшения расстояния между электродами, что облегчает образование защитного разряда.

Защитная искра образуется и без «усов»: между остриями штырей - рабочими органами, но при этом усиливается опасность пробоя трансформатора, «прошивки» монтажа внутри корпуса.

Вообще-то идея «усов» позаимствована у «фирменных» моделей и разработок. Взято, что называется, на вооружение и такое техническое решение, как использование выключателя непременно ползункового типа: во избежание самовключения, когда электрошоковое средство защиты покоится, скажем, в нагрудном или боковом кармане у его владельца.

Нелишне, думается, предупредить радиолюбителей о необходимости осторожного обращения с защитным ЭШУ как в период конструирования и наладки, так и при хождении с готовым электрошокером своими руками. Помните, что оно направлено против хулигана, преступника. Не превышайте пределов необходимой самообороны!

Проблема обеспечения безопасности и защиты себя и своих близких от посягательств на жизнь или имущество волнует каждого человека. Существует немало способов и средств для самозащиты, однако не все они доступны для приобретения и использования.

Лучшим оружием для защиты и самообороны считается электрошок, не требующий лицензии и регистрации в органах МВД. Электрошокер может приобрести любой желающий по достижении 18-ти летнего возраста, а благодаря компактному размеру и легкому весу шокер можно носить в кармане или в женской сумочке.

Типовой электрошокер состоит из нескольких узлов - преобразователя (1), конденсатора (2), разрядника (3) и трансформатора (4). Все ето вы видити на картинке ниже. Действует оно тоже нехитро. Конденсатор периодически разряжается на трансформатор, производя при этом разряд искры на его выходе. Казалось бы очень просто, но как показала практика тут есть скрытая хитрось (fulminat) и скрыта она именно в этом самом трансформаторе. В домашних уловиях практически невозможно сделать так, чтобы он правильно передавал импульс и был достаточно эффективен, для этого нужны специальные материалы, оборудование, а главное - расчеты, которые держатся в большом секрете - в сети вы ничего не найдете по этой теме. К тому же трансформатор имеет чисто конструктивные ограничения, которые не позволяют передавать через него мощные одиночые импульсы, необходимые нам.

Мы решили схитрить и придумали как сделать электрошокер своими руками в 3 раза проще при сохранении всей мощности. Действие происходит следующим образом: поджигающий конденсатор работает на систему разрядник-трансформатор аналогично электрошокеру, вследствии чего на его выходе возникает высоковольтный импульс пробивающий несколько сантиметров воздуха. И в этот момент в дело вступает основной, боевой конденсатор, который через образовавшийся ионизированный канал бъет всеми своими джоулями напрямую. Дело тут в том, что в момент образования электрического разряда возникает проводящий канал, который по сути заменяет кусок провода. Таким образом мы используя высокое напряжение подводим заряд к объекту практически без потерь, что позволяет снизить габариты, и собственно мощность девайса необходимую для достижения дикой злости его действия.


Изготовление шокера начнем с наиболее сложной детали - трансформаторов. Как показала практика трудности с повторением шокеров заключаются обычно именно в намотке - в процессе у многих сдают нервы и конструкция подвергается преждевременному разбитию молотком:-D Поэтому мы пошли путем промышленности, где как известно исходят из того что проще сделать в больших количествах и без проблем. Процесс при этом становится почти развлечением, но не стоит забывать о внимательности - трансформатор от этого не перестает быть наиболее ответственной частью девайса.

ТРАНСФОРМАТОР ПРЕОБРАЗОВАТЕЛЯ

Вам понадобится броневой сердечник Б22 из феррита 2000НМ. Поясню броневой не значит пуленепробиваемый:-) а просто такая конструкция закрытая со всех сторон в которой оставлены только дырки для проводов. Представляет собой две небольшие чашки между которыми расположена шпулька почти как в швейной машине:-)

Только намотать на нее нужно не нитки, а тонкий эмалированный провод диаметром около 0.1мм, его можно достать из китайского будильника. Берем этот провод и мотаем на шпульке не считая витки до тех пор пока свободного места не останется около 1.5мм.

Для наилучшего результата мотать нужно слоями, прокладывая между ними тонкую изоленту. Таким образом у вас должно получится 5-6 слоев. Если вам повезет достать провод ПЭЛШО просто мотайте его внавал, без всякой изоляции, периодически капнув немного машинного масла. К концам провода полезно приделать тонкие многожильные выводы для большей надежности.

Далее изолируем все это в 1-2 слоя изолентой и наматываем 6 витков более толстой проволки, что нибудь в районе 0.7-0.9мм, с отводом от середины, т.е. на 3м витке останавливаем процесс и делаем отвод (скрутку), затем доматываем оставшиеся 3 витка. Все это не лишне будет пофиксировать суперклеем или еще чем нибудь. В завершении склеиваем чашки между собой, либо просто обматываем изолентой ели не уверены в качестве намотки.

ВЫХОДНОЙ ТРАНСФОРМАТОР

Потренировались и хватит. Теперь реально сложная деталь. Хотя забегая вперед скажу что ЭТО по сравнению с тем что приходилось делать раньше просто развлечение;-) Потому что намотать традиционный слоевой трансформатор в домашних условиях и с первого раза да еще чтобы работало НЕВЫЙДЕТ. Вместо слоев в нашем трансформаторе будут секции.

Для начала нужно достать трубку из полипропилена диаметром 20мм. Продаются они в магазине сантехники как замена обычным водопроводным трубам. По виду белая така с толстой стенкой, чистый пластик. Есть очень похожая но металопластик - не подойдет. Нам нужен кусок всего 5-6см в длину.

Путем сложного процесса этот кусок должен стать секционным каркасом. Делается это следущим образом - берем дрель, в которую зажимаем сверло или болт близкий по диаметру чтобы влезал в трубку, наматывая на него изоленту добиваемся чтобы трубка сидела плотно и ровно. Далее берем резак который можно сделать из стальной пластины, наждачного полотна и т.д., и начинаем протачивать канавки прикидывая так чтобы не прорезать трубу. В итоге должны получится секции примерно 2х2 мм т.е. 2 мм в глубину и ширину. Чтобы они были ровнее после заточки можно немного подточить надфилем. После чего берем канцелярский нож для бумаги и вдоль всего каркаса делаем надрез 2-3мм шириной, смотрите окуратнее т.к. можно прорезать стенку трубы что черевато переделыванием. На этом подготовка завершена.

Потому что далее начинается самое интересное. На этот раз нам нужен провод диаметром около 0.2 мм. Его можно в блоке питания, пускателях и т.д.. Этот провод нужно намотать на все секции нашего каркаса, не слишком усердствуя, чтобы провод не выходил за рамки секции а лучше чтобы немного недоходил. Перед намоткой к началу провода припаивается опять же небольшой многожильный проводок, который нужно хорошо зафиксировать клеем чтобы не оторвался в случае чего. Конец провода пока ни с чем не соединяем.

Теперь нужно найти ферритовый стержень диаметром около 10мм и длинной около 50. Нам нужен феррит 2000НМ, для этих целей подойдет трансформатор строчной развертки от отечественного телевизора. Нужно снять с него все лишнее. Затем оккуратно расколите его как показано на рисунке. Если строчник из небольших половинок то их можно склеить суперклеем для получения более длинного стержня. Для обработки феррита нужно применить точило (наждачный круг) чтобы в итоге получился круглый стержень диаметром около 10мм и длинной около 50. Процесс очень тяжелый, во время него вы сможете почуствовать в полной мере работником угольной шахты:-D Вместо стержня можно использовать множество маленьких феритовых колечек склееных между собой - некоторым их проще купить, а делаются они тоже из феррита 2000НМ:-)

Стержень нужно обмотать слоем изоленты и намотать 20 витков провода 0.8 - того что мы использовали в первом трансформаторе, растянув намотку на всю его длину, только по краям отступив 5-10мм и фиксируем провод нитками или той же изолентой. НАМАТЫВАТЬ ПРОВОД НУЖНО В ТОМ ЖЕ НАПРАВЛЕНИИ ЧТО И НА СЕКЦИИ, например по часовой стрелке или против кому как нравится;-) После чего все изолируем в несколько слоев, насколько позволяет внутрений диаметр трубки, чтобы она входила внутрь плотно но без усилия.

После подготовительного и намоточного процесса проделываем следущий фокус. Вставляем стержень внутрь каркаса, и с той стороны где заканчивается HV-обмотка (где нет вывода в виде проводка) СОЕДИНЯЕМ 2 ОБМОТКИ ВМЕСТЕ!!! Таким образом у трансформатора будет 3 вывода вместо обычных 4х: конец от 1й обмотки, общая точка и HV-вывод. ВНИМАНИЕ! следите за фазировкой (намотка в одинаковом направление) иначе шокер не будет работать.

В завершение процесса трансформатор нужно поместить в картонный коробок и залить горячим парафином. Для этого расплавьте парафин в консервной банке но греть не нужно, иначе горячий парафин повредит каркас и все труды пойдут насмарку. Выводы нужно предварительно заклеить каким-либо клеем чтобы парафин не вытекал:-) Лучше всего процесс производить в две стадии. Сначала залить парафином, потом поставить перед тепловентилятором или на радиатор чтобы он прогревался в течение 10-15 минут таким образом все воздушные пузырьки повсплывают и уйдут. Коробок нужно делать с ЗАПАСОМ ПО ВЫСОТЕ тк после остывания парафин сильно усаживается. Убрать лишнее можно ножом. Такая технология почти не уступает вакуумному процессу в заводских условиях, но может применятся на кухне. Если у вас есть возможность позаимствовать промышленный вакуумный насос то вместо парафина лучше использовать эпоксидку - она надежнее.

Пришло время увидеть схему электрошокера. Она очень проста и думаю не вызовет проблем с пониманием. Через мост заряжается поджигающий кондер, и одновременно через дополнительные диоды заряжается боевой. Эти диоды нужны чтобы конденсаторы не создавали одну цепь, иначе пришлось бы мотать отдельную обмотку транса и второй мост что весьма напряжно - изолировать транс придется не хуже выходного да и габариты будут больше. На некоторую разницу времени заряда которая в теории присутствует при таком варианте можно смело не обращать внимания, т.к. на практике ее попросту нет. Отсюда следует только одно ограничение, конденсаторы должны быть одинаковые. Что вобщемто нас особо не беспокоит.

Все детали не особо дефицитные, их можно свободно заказать или просто купить на базаре.. Наиболее критичны кондеры и разрядник, советую подзаморочится и найти именно те что указаны в списке деталей т.к. от них зависят размеры шокера и качество его работы.


Все остальное можно ставить что попадется под руку. Для преобразователя подходят почти любые транзисторы начиная от IRFZ24 и заканчивая IRL2505. Резисторы также некритичны и могу отличатся в ту или иную сторону.. Конденсатор на 3300 пик нужен для ограничения броска тока в момент запуска, т.е. для защиты преобразователя. При использовании довольно мощных транзисторов (IRFZ44+) его можно не ставить.

В работе этой схемы электрошокера есть одна интересная особенность которую некоторые могли уже заметить. А именно при коротком замыкании контактов, например при непосредственном контакте обоих электродов с кожей, правильная работа шокера нарушается, т.к. боевой кондер не успевает заряжатся до нужного напряжения. В данном случае этот косяк не так важен, как в умножительных шокерах, т.к. напряжение на конденсаторе всего около 1000 вольт, чего не достаточно даже для пробивания тонкой майки. Поэтому для простоты и удешевления конструкции этому факту не было уделено внимание. Но все же, если вы собрались идти на войну с нудистами:-D ТО НУЖНО ПоСТАВИТЬ ВТОРОЙ РАЗРЯДНИК последовательно с любым из выходных электродов шокера!

Теперь немного о конструктивной композиции девайса. Вся схема электрошокера, при использование указанных деталей, помещается на плате размером 40*45мм. Аккумуляторы представляют собой 6 штук NicD типоразмера 1/2 АА, т.е. вдвое короче обычных пальчиковых, емкостью 300 мА\ч. Что соответствует мощности примерно 15вт. Продаются они как запасные для радиотелефонов в виде блоков по 3 или 4 штуки. Стоимость в районе сотни деревянных за блок;-) Таким образом весь шокер можно сделать размером с пачку сигарет.

Последовательность сборки следущая. Для начала отказываемся от платы, Т.к. полюбому в процессе придется перепаивать те или иные детали и она неизбежно туда уйдет... Берем радиатор, например из БП компа и ставим на него транзисторы. Радиатор должен либо иметь изолирующие прокладки либо тогда нужно 2 отдельных радиатора чтобы они не соприкасались между собой.. Прикручиваем их туда и напаиваем все остальное прямо на весу. Таким образом начальный макет должен выглядеть как кучка хлама у вас на столе:-) Не забудьте зафиксировать HV выводы на нужном расстояние (для начала не более 15мм) иначе трансформатор и все остальное за ним также имеет нашс сгореть.


Включаем девайс. Питание нужно брать именно с тех акумов которые в дальнейшем пойдут в девайс, всякие там блоки питания и другие источники не подойдут! Впринципе настройки шокер не требует и должен заработать сразу. Вопрос в том, как он заработает. При указанных акумах частота разрядов около 35 герц. Если она меньше, тут возможно два варианта, либо трансформатор намотан плохо, либо вы использовали другие транзисторы и нужно подобрать сопротивления по 330 ом.

Смотрим даташит на нужный вам транз, ищем там строку "INPUT CAPACITANCE" чем больше цифра, тем меньше должно быть сопротивление и наоборот. К примеру для IRFZ44 оно может быть и 1к, а для IRL2505 не более 240 Ом. Подбором добиваемся оптимальной частоты разрядов... Далее начинаем разводить выходные контакты до предполагаемого расстояния которое вам нужно (например у меня 25мм). Если все ок, !разводим еще на сантиметр! и в таком состояние делаем тест в течение 5 сек. Если все ок возвращаем прежнее расстояние. Этот запас должен полюбому присутствовать, т.к. пробой воздуха зависит от многих факторов таких как влажность, давление, и прр., поэтому если расстояние будет "на пределе" в один прекрасный момент вся конструкция уйдет в нибытие. По той же причине везде используется 2 диода вместо одного, хотя и с одним все (вроде бы) работает отлично.

Если все заработало как надо можно смело запаивать детали в плату и переходить к следующему этапу...

Поскольку мы не можем как на заводе штамповать детали из пластика, и мало у кого есть возможность использовать заводской корпус, остается одно - ЭПОКСИДКА. Процесс конечно кропотливый, но он имеет ряд своих преимуществ. В результате получается монолитный блок, который не боится ударов, попадания воды, абсолютно надежен в электрическом плане. Для изготовления вам понадобится собственно эпоксидка, ее берите много, тонкий картон от какойнить коробки, клеевой пистолет и еще некоторые мелочи...

Начинается процесс с вырезания основы из картона, т.е. "вид сверху". Для етого очень удобно использовать тетрадный лист на котором предварительно разметить план как и что где будет находится, затем его наклеить на картонку и вырезать...

Теперь ваша задача обклеить основу по периметру этими полосками. Процесс довольно сложный. Для загибания картона удобно использовать плоскогубцы с длинным носом или пинцет.. Клеить нужно обязательно с наружной стороны, при этом следите за герметичностью шва.

Расположите все основные детали внутри корпуса чтобы оценить их внутренюю компоновку. На этом этапе нужно определится где будут расположены переключатель и кнопка запуска:-) а также гнездо для зарядки акумулятора.


Применим термоусадку. Очень удобно использовать ее для некоторого утапливания выступающих элементов внутрь. Учтите что после заливки последует обработка и гдето 2-3мм снимется по бокам за счет картона. Также термоусадка позволяет достичь лучшей герметичности - на фото видно что с наружной стороны она закрыта (достаточно сжать пинцетом пока она горячая). На этом же этапе нужно соединить все детали между собой и проверить работу шокера в таком состоянии. В качестве боевых и защитных электродов я использовал алюминиевые заклепки, потолще и потоньше соответственно. Внутри алюминия стальной стержень, так что с пайкой проблем быть не должно, но все же очень удобно использовать кислоту.

Заливаем! Тут пояснять особо нечего, но учтите что эпоксидка обладает свойством проникать всюду куда не нужно, поэтому проверьте герметичность перед заливкой. Проверили? теперь еще раз. После этого можно приступать...

Стадия обработки. Через 6-8 часов, когда эпоксидка надежно схватится она все еще остается достаточно мягкой. В этот момент можно срезать лишнее монтажным ножом, придав шокеру удобную форму для удержания в руке. Этим вы не избавите себя от необходимости делать дальнейшую обработку наждаком и шкуркой, но сэкономите много нервных клеток;-) После обработки корпус можно покрыть каким-нить лаком, например цапоном.


И вот результат! После всего можно порадоватся глядя на такую штуку. Теперь можно обкусить защитные электроды до нужной длины если вы етого еще не сделали, и вперед!

Итак, шокер изготовлен, громко трещит и производит впечатление на окружающих;-) Но как же реально проверить степень его злости? Вначале мы говорили что это зависит от тока в импульсе который дает шокер. Значит его и будем искать;-) Ниже вы видите сравнение разряда от обычной трещалки и нашего девайса:

Видно что разряд намного толще, он имеет характерный желтый цвет и вспышки по краям, что говорит о большом токе. Насколько большом? Проведем простой тест. Возьмите обычный сетевой предохранитель на 0.25А и расположите между контактами шокера, так чтобы не было прямого контакта. Предохранитель сгорит. Это значит что выходной ток превышает 250 мА!!! Сравните с долями милиампер в обычном шокере:-) Понятно что в реальных уловиях из-за сопротивления тканей тела этот ток будет меньше, но всеравно В ДЕСЯТКИ РАЗ превосходить значения для обычных гражданских и даже милицейских моделей!

Технические характеристики самодельного электрошокера
- напряжение на электродах - 10 кВ,
- частота импульсов до 10 Гц,
- напряжение 9 В. (батарея "Крона"),
- вес не более 180 гр.

Конструкция прибора:

Прибор представляет из себя генератор высоковольтных импульсов напряжения, подсоединенный к электродам и помещенный в корпус из диэлектрического материала. Генератор состоит из 2-х последовательно соединенных преобразователей напряжения (Схема на рис. 1). Первый преобразователь - это несимметричный мультивибратор на транзисторах VT1 и VT2. Он включается кнопкой SB1. Нагрузкой транзистора VT1 служит первичная обмотка трансформатора Т1. Импульсы, снимаемые со вторичной его обмотки, выпрямляются диодным мостом VD1-VD4 и заряжают батарею накопительных конденсаторов С2-С6. Напряжение конденсаторов С2-С6 при включении кнопки SВ2 является питающим для второго преобразователя на тринистре VS2. Заряд конденсатора С7 через резистор R3 до напряжения переключения динистра VS1 приводит к выключению тринистра VS2. При этом батарея конденсаторов С2-С6 разряжается на первичную обмотку трансформатора Т2, наводя в его вторичной обмотке импульс высокого напряжения. Поскольку разряд носит колебательный характер, то полярность напряжения на батарее С2-С6 изменяется на противоположную, после чего восстанавливается благодаря переразрядке через первичную обмотку трансформатора Т2 и диод VD5. При перезарядке конденсатора С7 снова до напряжения переключения динистра VD1 снова включается тринистор VS2 и формируется следующий импульс высокого напряжения на выходных электродах.

Все элементы устанавливают на плате из фольгираванного стеклотексталита, как показано на рис.2. Диоды, резисторы и конденсаторы устанавливаются вертикально. Корпусом может служить любая подходящая по размерам коробка из материала не пропускающего электричество.

Электроды делают стальными игольчатыми до 2-х см длинной - для доступа к коже через одежду человека или шерсть животного. Расстояние между электродами не менее 25 мм.

Устройство не нуждается в наладке и действует безотказно только при правильно намотанных трансформаторах. Поэтому следуйте правилам их изготовления: трансформатор Т1 выполнен на ферритовом кольце типоразмера К10*6*3 или К10*6*5 из феррита марки 2000НН, его обмотка I содержит 30 витков провода ПЭB-20.15 мм, а обмотка II - 400 витков ПЭВ-20.1 мм. Напряжение на его первичной обмотке должно быть 60 вольт. Трансформатор Т2 намотан на каркасе из эбонита или оргстекла с внутренним диаметром 8 мм, внешним 10 мм, длинной 20 мм, диаметром щек 25 мм. Магнитопроводом служит отрезок от ферритового стержня для магнитной антенны длинной 20 мм и диаметром 8 мм.

Обмотка I содержит 20 витков провода ПЭЛШ (ПЭВ-2) - 0,2 мм, а обмотка II - 2600 витков ПЭВ-2 диаметром 0,07-0,1 мм. В начале на каркас наматывают обмотку II, через каждый слой которой кладется прокладка из лакоткани (обязательно иначе может произойти пробой между витками вторичной обмотки), а затем поверх нее наматывают первичную обмотку. Выводы вторичной обмотки тщательно изолируют и присоединяют к электродам.

Электрошоковые устройства являются одним из лучших способов для самообороны.

Сегодня в свободной продаже можно найти для гражданских лиц с мощностью не более 3-х ватт. Гражданский кодекс суров, ЭШУ повышенной мощности доступны только работникам органов, а для простых смертных мощность ограничена 3 ваттами.

Однозначно штатных 3 ватта явно недостаточно для реальной обороны, поэтому часто приходится конструировать электрошоковые устройства своими руками в домашних условиях.
На самом деле, конструкция самодельного ЭШУ достаточно простая, на умножителе напряжения можно реализовать достаточно мощные схемы с минимальными затратами. Рассматриваемая модель обеспечивает выходную мощность до 70 ватт, а это в 13 раз больше мощности промышленного электрошокера.
Конструкция состоит из высоковольтного инвертора и умножителя напряжения.

Инвертор выполнен по простой схеме мультивибратора на двух полевых ключах. Выбор полевых транзисторов достаточно большой. Можно применить ключи из серии IRFZ44, IRFZ48, IRF3205, IRL3705 и любые другие аналогичные.


Трансформатор намотан на ферритовом Ш-образном сердечнике. Такой сердечник можно найти в маломощных китайских ЭТ, также в отечественных телевизорах.


Все обмотки с каркаса нужно снять и мотать новые. Первичная обмотка мотается проводом 1 мм и состоит из 2Х5 витков. Далее нужно изолировать обмотку 10-ю слоями прозрачного скотча или второпластной ленты и мотать повышающую обмотку.
Эта обмотка мотается проводом 0,07-0,1мм и состоит из 800-1000 витков. Обмотка мотается по слоям, каждый слой состоит из равномерно намотанных 80 витков. После намотки собираем трансформатор, заливать смолой не нужно.
В умножителе напряжения использованы высоковольтные конденсаторы на 5 КВ 2200 пФ - можно найти в отечественных телевизорах. Конденсаторы можно взять и на 3кВ, но опасность их пробоя велика.

Есть множество способов чувствовать себя уверенно в темной подворотне или на узких неосвещенных улицах, но большинство из них либо незаконны, либо требуют большого количества времени. Не каждый может запросто потратить 20-30 тысяч рублей на травматическое оружие да еще и потратить пару месяцев на обучение и получение лицензии. То же относится и к боевым искусствам – несколько лет отрабатывания приемов в зале не гарантирует защиты, а научиться драться за месяц невозможно.

Одним из лучших вариантов для защиты себя и близких от посягательств злоумышленников – электрошокер. Он не требует лицензии на ношение и не подлежит регистрации в МВД, легко умещается в кармане или дамской сумочке. Купить его может любой совершеннолетний гражданин России, но не всем это по карману. Мы рассмотрим один из многочисленных способов как своими руками собрать простой и мощный электрошокер, со схемами и картинками, иллюстрирующими процесс создания.

Перед тем как начать

Самодельные электрошокеры фактически запрещены, так как для использования на территории Российской Федерации допускаются только устройства российского производства , имеющие лицензию. Сам факт обладания таким изделием может привлечь интерес правоохранительных органов.

Что такое электрошокер

Типичный представитель электрического устройства для самообороны состоит из пяти узлов: элемента питания, преобразователя напряжения, конденсатора, разрядника и трансформатора. Механизм работы таков: конденсатор с некоторой периодичностью разряжает накопленный заряд на трансформатор, на выходе которого происходит разряд – та самая искра. Проблема такой конструкции – этот трансформатор, который создается в заводских условиях из особых материалов по тайной схеме, которую не найти на просторах интернета.

Поэтому схема будет несколько иной – основанной на паре поджигающего и боевого конденсаторов. Суть такова:

  • По нажатию кнопки поджигающий конденсатор действует так же, как и в оригинальной схеме – разряжается на трансформатор, а тот – дает искру. Эта искра – ионизированный слой воздуха, с гораздо меньшим сопротивлением, чем обычный воздух.
  • в момент появления искры срабатывает боевой конденсатор, который бьет всей накопленной мощностью через этот канал практически без потерь.

Как результат – при меньшей общей мощности изделия и экономии на трансформаторе получается такой же, если не злее, электрошокер, при этом в полтора раза меньше.

Как можно сделать самый простой электрошокер дома: с чего начать

Изготовление начинается с самого сложного – трансформатора. Причина этого – в сложности его намотки, так что если сборщик не вытерпит и выберет более простой способ получения устройства самообороны (его покупки), то не будут затрачены силы на изготовление остальных частей.

Основой станет магнитный броневой сердечник Б22 из феррита 2000НМ. Броневым он называется потому, что это закрытая со всех сторон штука с двумя выводами. Выглядит как обычная катушка, вроде той, которая вставляется в швейную машинку. Правда, вместо ниток в него наматывается тонкий лакированный провод диаметром примерно 0,1 миллиметр. Его можно купить на радиорынке или достать из будильника. Перед началом намотки припаяйте к концам провода выводы, чтобы сделать конструкцию прочнее и устойчивее к обрыву.

Мотать нужно вручную до того, как свободного пространства на катушке не останется около 1,5 миллиметра. Для достижения наилучшего эффекта лучше мотать слоями, изолируя их друг от друга изолентой или другим диэлектриком. А если найдете провод ПЭЛШО, то и вовсе никакой изоляции не потребуется – она уже есть в конструкции провода: просто мотайте внавал и прокапайте немного машинным маслом.

После окончания намотки заизолируйте витки парой мотков изоленты и поверх намотайте 6 витков более толстой проволоки (0,7-0,9 миллиметров). На середине намотки нужно сделать отвод – просто сделайте скрутку и выведите ее наружу. Всю проволоку лучше зафиксировать цианоакрилатом, а две половинки катушки зафиксируйте друг с другом цианоакрилатом или изолентой,


Делаем выходной трансформатор

Это самая сложная часть создания электрошокера своими руками. Так как стандартный слоевой трансформатор сделать дома не получится, то упростим конструкцию – сделаем ее секционной.

В качестве основы возьмем обычную пропиленовую трубку диаметром 2 сантиметра. Если у вас остались такие после ремонта в ванной – пора ими воспользоваться, если нет – купите в магазине сантехники. Главное, чтобы она не была армирована металлом. Нам потребуется отрезок длиной 5-6 сантиметров.

Сделать из нее секционный каркас просто – зафиксируйте заготовку и нарежьте по ее диаметру канавки шириной и глубиной 2 миллиметра через каждые два миллиметра. Будьте внимательны – трубу прорезать нельзя. После этого вдоль каркаса прорежьте канавку шириной 3 миллиметра.


Осталось только сделать намотку. Она выполняется из провода диаметром 2 миллиметра, который наматывается на все секции в пределах трубки. К началу провода следует припаять вывод и зафиксировать его клеем во избежание случайного обрыва.


В качестве сердечника для трансформатора подойдет ферритовый стержень диаметром 1 сантиметр и длиной приблизительно 5 сантиметров. Подходящий материал можно найти в трансформаторах строчной развертки в старых советских телевизорах – нужно только подогнать его под размеры и обточить до достижения формы, собственно, стержня. Это довольно пыльная работа, так что не стоит выполнять ее дома и без респиратора. Если мастерской или гаража поблизости нет – воспользуйтесь ферритовыми кольцами, склеив их между собой, или купите на радиорынке.


Стержень нужно обмотать изолентой и сделать на нем обмотку из провода 0,8 (его мы использовали для второй обмотки трансформатора преобразователя. Обмотка делается по всей длине сердечника, не доходя до краев 5-10 миллиметров, и фиксируется изолентой.

Обмотка сердечника наматывается в ту же сторону, что и обмотка на пропиленовой трубке – по часовой стрелке или против.

После этого заизолируйте сердечник изолентой, но следите за диаметром – он должен плотно проходить в трубку. С той стороны, где у намотки на трубке нет припаянного провода, спаяйте две намотки (внешнюю и внутреннюю) вместе. Таким образом у вас получится три вывода – два оконечника намоток и общая точка.

Если вам непонятен процесс, можете посмотреть видео на Ютубе о том, как сделать электрошокер своими руками в домашних условиях.

Завершающий этап – заливка парафином. Подойдет любой – главное не кипятить его во избежание повреждения внутренних элементов трансформатора. Сделайте небольшой короб высотой чуть больше высоты трансформатора. Поместите в него трансформатор, провода выведите наружу и залейте точки выхода клеем. После этого залейте парафин в коробок и поставьте на батарею для того, чтобы парафин не остыл, а все пузырьки воздуха вышли. Запас по высоте нам нужен по причине усадки остывающего парафина. Лишнее уберите ножом.


Электрошокер своими руками из подручных материалов: распайка


Теперь пора взглянуть на принципиальную схему электрошокера. Она выглядит следующим образом:

  • через диодный мост заряжается поджигающий конденсатор
  • через дополнительные диоды заряжается боевой конденсатор.

Для преобразователя подойдут практически любые MOSFET-транзисторы по 330 ом, выбор резисторов тоже некритичен. Конденсаторы на 3300 пикофарад нужны для ограничения силы тока при запуске устройства, то есть для защиты преобразователя. Если вы используете мощные транзисторы (вроде IRFZ44+), то такая защита не требуется. и вы можете обойтись без установки таких конденсаторов.


В схеме есть одна особенность: при коротком замыкании контактов (например, при прикосновении к коже, а не к одежде) шокер не работает корректно, так как боевой конденсатор не успевает зарядиться. Если же вы хотите избавиться от такого недостатка – поставьте второй разрядник последовательно с одним из выходов.

Вся схема (при правильной компоновке элементов на плате) вполне умещается на площадке 4 на 5 сантиметров. Для питания возьмем 6 никель-кадмиевых аккумуляторов емкостью в 300 миллиампер-часов размером в половину пальчиковой батарейки мощностью примерно 15 ватт. Таким образом все устройство помещается в корпус размером с сигаретную пачку.


Для контактов лучше всего взять алюминиевые заклепки. Они обладают достаточной токопроводностью и имеют стальной средечник. Он дает сразу два преимущества: прочность контактов значительно увеличивается и не возникает проблем с пайкой алюминия. Если их нет, то подойдут и обычные стальные пластинки любой формы.

Сборку делать можно либо на вытравленной текстолитовой плате, либо распаивать элементы проводами. Но для начала лучше собрать это на макете для того, чтобы не тратить силы и время на переделку платы в случае, если что-то пойдет не так. Высоковольтные выводы стоит зафиксировать на небольшом расстоянии (около полутора сантиметров) чтобы не сгорел трансформатор.

После распайки включаем устройство. Питание нужно брать сразу с аккумуляторов – не следует использовать блоки питания. Настройка ему не потребуется и он должен заработать сразу после включения, частота образования искр – приблизительно 35 герц. Если она значительно меньше – причина скорее всего в неправильно намотанном трансформаторе или в неправильных транзисторах.

Если все работает корректно, то разведите выходные контакты на сантиметр и запустите устройство еще раз. У стандартного шокера расстояние между контактами 2,5 сантиметров. Если все работает правильно, то разведите контакты еще на сантиметр и протестируйте устройство еще раз. Если оно работает все хорошо – сведите их обратно на стандартные 2,5 сантиметра. Такой запас мощности нужен для того, чтобы устройство работало в любых условиях влажности и давления.

Если детали не дымят и не плавятся – все хорошо, можете запаивать элементы на плату и переходите к последнему этапу – созданию корпуса.

Корпус для электрошокера в домашних условиях

Так как штамповка корпуса в домашних условиях недоступна, а 3D-принтеры доступны не везде и не всем, то воспользуемся народным средством – эпоксидной смолой. Формовка такого короба – кропотливый процесс, но у такого материала есть ряд преимуществ:

  • монолитность;
  • герметичность;
  • электроизоляция.

Для создания потребуется сама эпоксидная смола, картон в качестве каркаса, клеевой пистолет и некоторые мелочи.

Процесс лучше начинать с вырезания из картона задней крышки корпуса с предварительно начерченным планом расположения деталей, после чего обклеить его полосками картона по периметру при помощи клеевого пистолета. Полоски должны быть длиной с ширину шокера (примерно 3 сантиметра) плюс запас для наклейки. Клеить нужно с внешней стороны основы, при этом внимательно следите за тем,чтобы шов был герметичен.


После того как все полоски будут приклеены, поместите внутрь элементы схемы и оцените правильность их компоновки. Также определите, где у вас будет располагаться кнопка запуска и разъем для зарядки аккумуляторов. Если все устраивает, то проверьте корректность соединения элементов между собой и работу шокера еще раз. Особое внимание уделите герметичности корпуса – эпоксидка умеет проникать в незаметные щели и оставлять трудновыводимые пятна на любой поверхности.

Пора приступать к заливке формы эпоксидной смолой. Залитую форму отставьте в сторону и подождите 6-8 часов. После этого времени она не станет твердой, но будет достаточно пластичной для того, чтобы придать корпусу желаемую эргономичную форму. После полного застывания обработайте эпоксидку наждачной бумагой и залакируйте любым лаком, например, цапонлаком.

В результате вы получите надежное и прочное устройство, не боящееся ударов, падений и воды. Как его протестировать? Возьмите предохранитель на 0,25 ампер и расположите между контактами. После запуска устройства предохранитель сгорит – это показывает, что мощность устройства превышает 250 миллиампер, что является значительной мощью, которая может остановить даже самого рьяного и габаритного злоумышленника.

Технические характеристики самодельного электрошокера
- напряжение на электродах - 10 кВ,
- частота импульсов до 10 Гц,
- напряжение 9 В. (батарея "Крона"),
- вес не более 180 гр.

Конструкция прибора:

Прибор представляет из себя генератор высоковольтных импульсов напряжения, подсоединенный к электродам и помещенный в корпус из диэлектрического материала. Генератор состоит из 2-х последовательно соединенных преобразователей напряжения (Схема на рис. 1). Первый преобразователь - это несимметричный мультивибратор на транзисторах VT1 и VT2. Он включается кнопкой SB1. Нагрузкой транзистора VT1 служит первичная обмотка трансформатора Т1. Импульсы, снимаемые со вторичной его обмотки, выпрямляются диодным мостом VD1-VD4 и заряжают батарею накопительных конденсаторов С2-С6. Напряжение конденсаторов С2-С6 при включении кнопки SВ2 является питающим для второго преобразователя на тринистре VS2. Заряд конденсатора С7 через резистор R3 до напряжения переключения динистра VS1 приводит к выключению тринистра VS2. При этом батарея конденсаторов С2-С6 разряжается на первичную обмотку трансформатора Т2, наводя в его вторичной обмотке импульс высокого напряжения. Поскольку разряд носит колебательный характер, то полярность напряжения на батарее С2-С6 изменяется на противоположную, после чего восстанавливается благодаря переразрядке через первичную обмотку трансформатора Т2 и диод VD5. При перезарядке конденсатора С7 снова до напряжения переключения динистра VD1 снова включается тринистор VS2 и формируется следующий импульс высокого напряжения на выходных электродах.

Все элементы устанавливают на плате из фольгираванного стеклотексталита, как показано на рис.2. Диоды, резисторы и конденсаторы устанавливаются вертикально. Корпусом может служить любая подходящая по размерам коробка из материала не пропускающего электричество.

Электроды делают стальными игольчатыми до 2-х см длинной - для доступа к коже через одежду человека или шерсть животного. Расстояние между электродами не менее 25 мм.

Устройство не нуждается в наладке и действует безотказно только при правильно намотанных трансформаторах. Поэтому следуйте правилам их изготовления: трансформатор Т1 выполнен на ферритовом кольце типоразмера К10*6*3 или К10*6*5 из феррита марки 2000НН, его обмотка I содержит 30 витков провода ПЭB-20.15 мм, а обмотка II - 400 витков ПЭВ-20.1 мм. Напряжение на его первичной обмотке должно быть 60 вольт. Трансформатор Т2 намотан на каркасе из эбонита или оргстекла с внутренним диаметром 8 мм, внешним 10 мм, длинной 20 мм, диаметром щек 25 мм. Магнитопроводом служит отрезок от ферритового стержня для магнитной антенны длинной 20 мм и диаметром 8 мм.

Обмотка I содержит 20 витков провода ПЭЛШ (ПЭВ-2) - 0,2 мм, а обмотка II - 2600 витков ПЭВ-2 диаметром 0,07-0,1 мм. В начале на каркас наматывают обмотку II, через каждый слой которой кладется прокладка из лакоткани (обязательно иначе может произойти пробой между витками вторичной обмотки), а затем поверх нее наматывают первичную обмотку. Выводы вторичной обмотки тщательно изолируют и присоединяют к электродам.

Среди средств самозащиты электрошоковые устройства (ЭШУ) - не на последнем месте, особенно по силе психологического воздействия на злоумышленников. Однако и стоимость имеют немалую, что побуждает радиолюбителей к созданию электрошокера своими руками их аналогов.

Не претендуя на сверхоригинальность и суперновизну идей, предлагаю свою разработку, повторить которую под силу любому, кто хотя бы раз в жизни имел дело с намоткой трансформатора и монтажом наипростейших устройств типа детекторного радиоприёмника с усилителем на одном - двух транзисторах.

Основу предлагаемого мною электрошокера своими руками составляют (рис. 1а) транзисторный генератор, преобразующий постоянное напряжение от источника электропитания типа гальванической батареи «Крона» («Корунд», 6PLF22) или аккумулятора «Ника» в повышенное переменное, с типовым умножителем U. Очень важным элементом ЭШУ является самодельный трансформатор (рис. 1б и рис. 2). Магнитопроводом для него является ферритовый сердечник диаметром 8 и длиной 50 мм. Такой сердечник можно отколоть, например, от магнитной антенны радиоприёмника, предварительно надпилив исходный по окружности краем абразивного камня . Но эффективнее работает трансформатор, если феррит - от телевизионного ТВС. Правда, в этом случае придётся из базового П-образного магнитопровода вытачивать цилиндрический стержень требуемых размеров.

Трубкой-основой каркаса для размещения на нём трансформаторных обмоток служит 50-мм отрезок пластмассового корпуса от уже отработавшего своё фломастера, внутренний диаметр которого соответствует вышеназванному ферритовому стержню. Щёчки размером 40x40 мм вырезают из 3-мм листа винипласта или оргстекла. С трубкой-отрезком корпуса фломастера их накрепко соединяют, предварительно смазав посадочные места дихлорэтаном.

Для трансформаторных обмоток используется в данном случае медный провод в эмалевой высокопрочной изоляции на основе винифлекса. Первичная 1 содержит 2x14 витков ПЭВ2-0.5. У обмотки 2 их почти вдвое меньше. Точнее, в ней - 2x6 витков того же провода. Зато высоковольтная 3 имеет 10 000 витков более тонкого ПЭВ2-0,15.

В качестве межслойной изоляции вместо плёнки из политетрафторэтилена (фторопласта) или полиэтилентерефталата (лавсана), обычно рекомендуемых для таких обмоток, вполне приемлемо использование 0,035-мм межэлектродной конденсаторной бумаги. Ею целесообразно запастись заранее: например, извлечь из 4-микрофарадных ЛСЕ1-400 или ЛСМ-400 от установочной старой арматуры под лампы дневного света, давно выработавшей, казалось бы, свой ресурс, и разрезать точно по рабочей ширине каркаса будущего трансформатора.

После каждых трёх «проволочных» слоёв в авторском варианте широкой кистью непременно выполнялась «промазка» получающейся обмотки эпоксидным клеем, слегка разведённым ацетоном (чтобы «эпоксидка» была не очень вязкой) и в 2 слоя прокладывалась конденсаторнобумажная изоляция. Далее, не дожидаясь отвердения, намотка продолжалась.

Во избежание обрыва провода вследствие неравномерности вращения каркаса при намотке, ПЭВ2-0.15 пропускался через кольцо. Последнее висело на пружине из стальной проволоки диаметром 0,2 - 0,3 мм, несколько оттягивая провод кверху. Между высоковольтной и остальными обмотками устанавливалась антипробойная защита - 6 слоёв той же конденсаторной бумаги с «эпоксидкой».

Концы обмоток припаяны к штырькам, пропущенным через отверстия в щёчках. Однако выводы можно сделать, не разрывая провода обмотки, из того же ПЭВ2, складывая в 2, 4, 8 раз (в зависимости от диаметра провода) и скручивая их.

Готовый трансформатор обматывают одним слоем стеклоткани и заливают эпоксидной смолой. Выводы обмоток при монтаже прижимают к щёчкам и укладывают с максимальным разведением концов друг от друга (особенно у высоковольтной обмотки) в соответствующий отсек корпуса. В результате даже при 10-минутной работе (а более длительного непрерывного использования защитному электрошокеру своими руками и не требуется) пробои у трансформатора исключаются.

В изначальном варианте конструкции генератор ЭШУ разрабатывался с ориентировкой на применение транзисторов КТ818. Однако замена их на КТ816 с любым буквенным индексом в наименовании и установка на небольшие пластинчатые радиаторы позволила уменьшить вес и размеры всего устройства. Тому же способствовало и использование в умножителе напряжения хорошо зарекомендовавших себя диодов КЦ106В (КЦ106Г) с высоковольтными керамическими конденсаторами К15-13 (220 пФ, 10 кВ). В итоге удалось практически всё уместить (без учёта предохранительных усов и штырей разрядника) в пластмассовый корпус типа мыльницы размером 135x58x36 мм. Вес защитного ЭШУ в сборе - около 300 г.

В корпусе между трансформатором и умножителем, а также у электродов со стороны пайки необходимы перегородки из достаточно прочной пластмассы - как мера по укреплению конструкции в целом и предосторожность, позволяющая избежать проскакивания искры с одного радиоэлемента монтажа на другой, а также как средство предохранения самого трансформатора от пробоев. С наружной части под электродами крепятся усы из латуни для уменьшения расстояния между электродами, что облегчает образование защитного разряда.

Защитная искра образуется и без «усов»: между остриями штырей - рабочими органами, но при этом усиливается опасность пробоя трансформатора, «прошивки» монтажа внутри корпуса.

Вообще-то идея «усов» позаимствована у «фирменных» моделей и разработок. Взято, что называется, на вооружение и такое техническое решение, как использование выключателя непременно ползункового типа: во избежание самовключения, когда электрошоковое средство защиты покоится, скажем, в нагрудном или боковом кармане у его владельца.

Нелишне, думается, предупредить радиолюбителей о необходимости осторожного обращения с защитным ЭШУ как в период конструирования и наладки, так и при хождении с готовым электрошокером своими руками. Помните, что оно направлено против хулигана, преступника. Не превышайте пределов необходимой самообороны!

Идея создания электрошокера повышенной эффективности появилась у меня после испытания на себе нескольких подобных устройств промышленного изготовления. В ходе испытаний выяснилось, что они лишают противника боеспособности только после 4...8 секунд воздействия, и то если повезет:) Нужно ли говорить, что в результате реального применения такой шокер скорее всего окажется в заднем месте владельца.

Инфа: наше законодательство разрешает для простых смертных шокеры с выходной мощностью не более 3 Дж/сек (1 Дж/сек = 1 Вт), в то же время для работников УВД разрешены девайсы мощностью до 10 Вт. Но даже 10 ватт недостаточно для эффективной нейтрализации противника; американцы в ходе экспериментов на добровольцах убедились в крайней неэффективности шокеров мощностью 5...7 Вт, и решили создать девайс, который бы конкретно гасил противника. Такой девайс создали: "ADVANCED TASER M26" (одна из модификаций "AirTaser" одноименной фирмы).

Устройство создано по EMD-технологии, а проще говоря имеет увеличенную выходную мощность. Конкретно - 26 ватт (что называется, "почувствуйте разницу":)). Вообще же существует еще одна модель этого девайса - М18, мощностью 18 ватт. Это обусловлено тем, что тэйзер - дистанционный шокер: при нажатии на спуск из картриджа, вставленного в переднюю часть устройства, выстреливаются два зонда, за которыми тянутся проводки. Зонды летят не параллельно друг другу, а расходятся под небольшим углом, за счет чего на оптимальной дистанции (2...3 м) расстояние между ними становится 20...30 см. Понятно, что если зонды попадут куда-нибудь не туда, может получится кердык. Поэтому и выпустили устройство меньшей мощности.

Сначала я делал электрошокеры, по эффективности аналогичные промышленым (по незнанию:). Но когда узнал информацию, приведенную выше, то решил разработать РЕАЛЬНЫЙ электрошокер, достойный называтся ОРУЖИЕМ самообороны. К слову сказать, кроме электрошокеров есть еще ПАРАЛИЗАТОРЫ, но они вообще не рулят, т.к парализуют мышцы только в зоне контакта, причем эффект достигается далеко не сразу, даже при большой мощности.

Выходные параметры МегаШокера частично заимствованы у "ADVANCED TASER M26". По имеющимся данным, девайс генерирует импульсы с частотой повторения 15...18 Hz и энергией 1,75Дж при напряжении 50Kv (т.к. чем ниже напряжение, тем выше ток при той же мощности). Поскольку МегаШокер - все-таки контактное устройство, а также из заботы о собственном здоровье:), было решено сделать энергию импульса равной 2...2,4Дж, а частоту их следования - 20...30 Hz. Это при напряжении 35...50 киловольт и максимальном расстоянии между электродами (не менее 10 см).

Схема, правда, получилась несколько сложноватая, но тем не менее:

Схема: На микросхеме DA1 собран управляющий генератор (ШИМ контроллер), на транзисторах Q1, Q2 и трансформаторе Т1 - преобразователь напряжения 12v --> 500v. Когда конденсаторы С9 и С10 заряжаются до 400...500 вольт, срабатывает пороговый узел на элементах R13-R14-C11-D4-R15-SCR1, и через первичную обмотку Т2 проходит импульс тока, энергия которого вычисляется по формуле 1.2 (Е - энергия (Дж), С - емкость С9 + С10(мкФ), U - напряжение (в)). При U = 450v и С = 23 мкФ энергия будет 2,33 Дж. Резюком R14 устанавливается порог срабатывания. Конденсатор С6 или С7 (в зависимости от положения переключателя S3) - ограничивает мощность устройства, иначе она будет стремится к бесконечности, и схема сгорит.

Конденсатор С6 обеспечивает максимальную мощность ("МАХ"), С7 - демонстрационную ("DEMO"), которая позволяет любоватся электроразрядом без риска спалить устройство и/или посадить аккумулятор:) (при включении режима "DEMO" также надо выключить S4). Емкость С6 и С7 рассчитывается по формуле 1.1, или просто подбирается (для мощности 45 ватт при частоте 17 KHz емкость будет около 0,02 мкФ). HL1 - люминесцентная лампа (ЛБ4, ЛБ6 или аналогичные (С8 подбирается)), ставится для маскировки - чтобы девайс был похож на навороченный фонарь и не вызывал подозрений у различного вида работников милициии других личностей (а то могут отобрать, у меня был случай - отобрали похожее устройство). Ессно, без лампы можно обойтись. Элементы R5-C2 определяют частоту генератора, при указанных номиналах f = ~17KHz. Ризюк R11 ограничивает выходное напряжение, вообще без него можно обойтись - просто присоединить R16-С5 к корпусу. Диод D1 защищает схему от повреждения при подключении в неправильной полярности. Предохранитель - на всякий противопожарный (например: если где-нить замкнет - может рвануть аккумулятор (были случаи)).

Теперь по сборке устройства: можно собрать все устройство на макетной плате, но рекомендуется спаять импульсную схему (С9-С10-R13-R14-C11-D4-R15-SCR1) навесным монтажом, при этом провода, соединяющие С9-С10, SCR1 и Т2 должны быть как можно короче. Это же касается элементов Q1, Q2, C4 и T1. Трансформаторы Т1 и Т2 следует расположить подальше друг от друга.

Т1 наматывается на двух сложенных вместе кольцевых сердечниках из М2000НМ1, типоразмер К32*20*6. Сначала наматывается обмотка 3 - 320 витков ПЭЛ 0,25, виток к витку. Обмотки 1 и 2 содержат по 8 витков ПЭЛ 0,8...1,0. Наматываются они одновременно в два провода, витки следует равномерно распределить по магнитопроводу.

Т2 наматывается на сердечнике из трансформаторных пластин. Пластины нужно изолировать друг от друга пленкой (бумагой, скотчем и т.д.) Площадь сечения сердечника должна быть не меньше 450 квадратных миллиметров. Сначала наматывается обмотка 1 - 10...15 витков провода ПЭЛ 1,0...1,2. Обмотка 2 содержит 1000...1500 витков и наматывается слоями виток к витку каждый слой намотки изолируется несколькими слоями скотча или конденсаторной пленки (которую можно добыть, поломав сглаживающий кондер от ЛДС светильника. Потом это все заливается эпоксидной смолой. Внимание - первичную обмотку нужно тщательно изолировать от вторичной! А то может получится какая-нибудь гадость (девайс может выйти из строя, а может долбануть током владельца. Причем долбануть неХило...). Выключатель S1 - типа предохранитель (при ТАКОЙ мощности осторожность не повредит), S2 - кнопка включения, оба выключателя должны быть рассчитаны на ток не менее 10А.

Отличительная особенность схемы в том, что каждый может настроить ее для себя (в смысле для противника:) Выходная мощность устройства может быть в пределах от 30 до 75 ватт (делать меньше 30, ИМХО, нецелесообразно). А больше 75 - просто плохо, т.к. при дальнейшем увеличении мощности эффективность будет не намного больше, а риск значительно возрастет. Ну, и габариты устройства получатся немного того.). Выходное напряжение - 35...50 тыс. вольт. Частота разрядов должна быть не менее 18...20 в секунду. Рекомендуемые параметры - 40 ватт, энергия одиночного импульса 1,75Дж при напряжении 40Kv. (если понизить напряжение, можно уменьшить и энергию импульса, эффективность останется такой же. 1,75Дж при 40Kv будет примерно как 2,15Дж при 50Kv. Но делать напряжение меньше 35 Kv нецелесообразно, поскольку тогда будет мешать сопротивление кожи, т.е. ток в импульсе окажется недостаточным).

!
В этой статье речь пойдет о электрошоковом устройстве для гражданской самообороны. Автор данной самоделки AKA KASYAN.



Внимание! Автор не рекомендует данное устройство для повторения и не несет никакой ответственности за ваши действия. Использование и незаконный оборот самодельного электрошокового устройства наказуемо законом!

Ну а теперь, не теряя времени, приступаем к работе. Схема девайса сейчас перед вами:


Это схема классического электрошокера. Напряжение от источника питания поступает на схему повышающего преобразователя, на выходе которого получаем высокое напряжение высокой частоты. Это напряжение выпрямляется в постоянку диодным выпрямителем и накапливается в конденсаторе. Когда напряжение на конденсаторе выше напряжения пробоя искрового промежутка или разрядника, вся емкость конденсатора через воздушный пробой разряжается на первичную обмотку высоковольтной катушки. На вторичной обмотке этой же катушки получаем разряд с напряжением порядка 50 000 В и выше (все зависит от параметров катушки).


Вышло криво, но на работу это никак не повлияет. А если хотите, чтобы платы вашей самоделки выглядели как заводские, то стоит заказывать их на заводе.

Важно заметить, что разряды не могут нанести увечья. Они вызывают только болевой шок, дезориентацию и мышечные спазмы, которые продолжаются недолго. Нанести вред здоровью такой шокер не способен. Именно эта схемотехника электрошокового устройства применяется во всем мире для постройки как гражданских, так и полицейских электрошоковых устройств. Мощность именно этого варианта лежит в пределах от 7 до 10 Вт. Шокер имеет двухпозиционный переключатель. Первый режим - снятие с предохранителя. В этом случае загорается красный индикаторный светодиод. Стоит нажать на кнопку и шокер начнет трещать.




Второе положение - активация фонарика. На схеме он не нарисован.


Корпус. 3d модель корпуса была разработана Димой из YouTube канала «Бытовой диалог».


Остается только напечатать корпус на 3d принтере. Толщина стенок подобрана так, чтобы шокер не боялся ударов и падений, в общем смело можно использовать в качестве дубинки. Рукоятка удобная, с выемками для пальцев. Кнопка запуска девайса спрятана под указательным пальцем. Цвет корпуса не самый подходящий, но то что было тем автор и печатал. Ну а теперь переходим к начинке.

Источник питания - литий ионный.


Две последовательно соединенные банки стандарта 18650. В данной самоделке использованы аккумуляторы от батареи ноутбука. Именно эти банки можно разряжать токами около 5А, но перед установкой автор провёл несколько экспериментов, в ходе которых выяснилось, что они спокойно терпят 7-8А разрядного тока и до 15А в течении 20 секунд. А так автор советует использовать вот эти аккумуляторы, они высокотоковые, предназначены для вейпа, можно разряжать токами 20-30А.


С аккумулятором, думаю, все понятно. Стоит добавить только то, что автор снял заводское покрытие и заменил его термостойким скотчем для надежности, а затем соединил банки никелевой лентой методом контактной сварки - все как положено.


Аккумулятор готов. Система защиты батареи, она конечно нужна. Но случилось так, что у автора нашлась плата с защитой для 2-ух литий ионных банок на 3А на базе микросхемы HY2120, а наша схема жрет гораздо больше.

Автор конечно попробовал увеличить ток защиты данной штуки. Для этого он разработал свою плату, подняв ток защиты до 6А, но и этого было мало. Поэтому аккумулятор без всяких плат защиты и балансировки - это плохо, поэтому плату с нужным током автор уже заказал. Ну а пока защитой у нас будет реле, которое не сработает если аккумулятор разрядился ниже 6В.


Высоковольтный преобразователь.



Это двухтактный повышающий преобразователь автогенераторного типа, построенный на базе мощных полевых транзисторов. Шокер снабжен предохранителем. Во избежание от случайного включения сначала нужно включить девайс (загорается индикатор снятия с предохранителя), затем нажимаем на кнопку, и схема запускается.

Очень часто в самодельных шокерах используют систему запуска на основе обычной кнопки, но автор же всегда применял реле. Дело в том, что схема жрет колоссальные токи от источника питания, а найти компактные кнопки с током более 10А очень проблематично. Поэтому использована маломощная кнопка, нажатие которой подает питание на обмотку реле.






Реле замыкается, и основное силовое питание уже протекает через контакты реле. Напряжение катушки реле зависит от источника питания. Обычное 12-вольтовое реле такого плана прекрасно срабатывает от источника 6-7В.

Но если есть возможность ставьте реле с напряжением катушки 6В. Контакты реле рассчитаны на ток в 20А.

Выключатель.




Найти компактный выключатель с током 10-20А не проблема. Тут стоит самый обычный выключатель, такие даже в компьютерных блоках питания можно найти. Схема преобразователя, как говорилось ранее, построена на базе 2-ух полевых ключей.



В данном случае стоят транзисторы irfz44. Затворы ключей зашунтированы на массу резисторами.

Это в какой-то мере помогает ключам закрываться, разрядив затвор. Для защиты затворов от перенапряжения использованы стабилитроны. Их нужно взять с напряжением стабилизации от 6,2В до 12В, желательно одноваттные.

Затворные ограничительные резисторы взять с сопротивлением от 330 Ом до 1 кОм. Ключи ставить на радиатор не нужно, так как шокер предназначен для кратковременной работы. Перед сборкой убедитесь в том, что все компоненты исправны. И самое важное - проверьте транзисторы на подлинность, иначе они могут вылететь при первом запуске.

Дроссель намотан на компактном сердечнике из порошкового железа. Провод 0,85 мм. Количество витков может варьироваться в пределах от 12 до 20. Размеры кольца не критичны, их можно найти в выходных частях импульсных блоков питания, стоят после выпрямителей.

Импульсный трансформатор.


Как его мотать, показано в этом видеоролике:




Тут он полноценный двухполупериодный, иначе говоря обычный диодный мост. Построен он на высоковольтных диодных столбах советского образца КЦ106Г, но импортных аналогов очень много.

Диоды должны быть рассчитаны на обратное напряжение от 6 000 до 10 000В, ток не менее 10 мА, должны уметь работать на частотах 20 и более килогерц.

Накопительный конденсатор пленочный, рассчитан на напряжение 1600-2000В, емкость от 0,15 до 0,47 мкФ (чем больше емкость, тем реже разряды, но больше джоулей в одном разряде).


Параллельно этому конденсатору подключен высокоомный резистор для разряда емкостей после отключения шокера.


Разряжающих резисторов в данном случае 3. Соединены они последовательно, сопротивление каждого лежит в пределах от 3,3 до 7 МОм. Эта цепочка запрятана под термоусадку.

Искровой разрядник.






По сути, это воздушный зазор, через которой емкость конденсатора разряжается на первичную обмотку высоковольтной катушки. Разрядник нужен с напряжением пробоя 1000-1500В. Нужные разрядники можно купить или же отковырять из блоков розжига ксенона, но там разрядники как правило на 350-400В. Для того чтобы получить разрядник на нужное напряжение, автор соединил несколько штук последовательно.

Высоковольтная катушка.