Атмосфера и внутреннее строение Юпитера. Магнитное поле и кольца на Юпитере

Атмосфера Юпитера

Когда давление атмосферы Юпитера достигнет давления земной атмосферы, остановимся и осмотримся. наверху видно обычное голубое небо, вокруг клубятся густые белые облака сконденсированного аммиака. На этой высоте температура воздуха достигает -100о С.

Красноватая окраска части юпитерианских облаков говорит о том, что здесь много сложных химических соединений. Разнообразные химические реакции в атмосфере инициируются солнечным ультрафиолетовым излучением, мощными разрядами молний (гроза на Юпитере должна быть впечатляющим зрелищем!), а также теплом, идущим из недр планеты.

Атмосфера Юпитера кроме водорода (87%) и гелия (13%) содержит малые количества метана, аммиака, водяного пара, фосфорина, пропана и много других веществ. Здесь трудно определить из-за каких веществ юпитерианская атмосфера приобрела оранжевый цвет.

Следующий ярус облаков состоит из красно-коричневых кристаллов гидросульфида аммония при температуре -10о С. Водяной пар и кристаллы воды образуют более низкий ярус облаков при температуре 20о С и давлением в несколько атмосфер - почти над самой поверхностью океана Юпитера.

Толщина атмосферного слоя, в котором возникают все эти удивительные облачные структуры, - 1000 км.

Темные полосы и светлые зоны, параллельные экватору, соответствуют атмосферным течениям разного направления (одни отстают от вращения планеты, другие его опережают). Скорости этих течений - до 100 м/с. На границе разнонаправленных течений образуются гигантские завихрения.

Особенно впечатляет Большое Красное Пятно - колоссальный атмосферный вихрь эллиптической формы размером около 15 х 30 тыс. километров. Когда он возник - неизвестно, но в наземные телескопы он наблюдается уже 300 лет. Этот антициклон иногда почти исчезает, а затем появляется вновь. Очевидно, он родственник земных антициклонов, но из-за своих размеров гораздо более долгоживущий.

“Вояджеры”, посланные к Юпитеру провели тщательный анализ облаков, подтвердивший уже имевшуюся модель внутреннего строения планеты. Стало совершенно ясно, что Юпитер представляет собой мир хаоса: там бушуют нескончаемые бури с громами и молниями, кстати Красное Пятно является частью этого хаоса. А на ночной стороне планеты “Вояджеры” зарегистрировали многочисленные зарницы.

Юпитерианский океан

Юпитерианский океан состоит из главного на планете элемента - водорода. При достаточном высоком давлении водород превращается в жидкость. Вся поверхность Юпитера под атмосферой - это огромный океан сжиженного молекулярного водорода.

Какие волны возникают в океане жидкого водорода при сверхплотном ветре со скоростью 100 м/с? Вряд ли поверхность водородного моря имеет четкую границу: при больших давлениях на ней образуется газожидкая водородная смесь. Это выглядит как непрерывное “кипение” всей поверхности юпитерианского океана. Падение в него кометы в 1994 г. вызвало исполинское цунами многокилометровой высоты.

По мере погружения в океан Юпитера на протяжении 20 тыс. километров быстро увеличиваются давление и температура. На расстоянии 46 тыс. км. от центра Юпитера давление достигает 3 млн. атмосфер, температура 11 тыс. градусов. Водород не выдерживает высокого давления и переходит в жидкое металлическое состояние.

Ядро. Погрузимся еще на 30 тыс. км., во второй океан Юпитера. Ближе к центру температура достигает 30 тыс. градусов, а давление 100 млн. атмосфер: здесь располагается небольшое (“всего” в 15 масс Земли!) ядро планеты, которое в отличие от океана состоит из камня и металлов. Ничего в этом удивительного в этом нет - ведь и Солнце содержит примеси тяжелых элементов. Ядро сформировалось в результате слипания частиц, состоявших из тяжелых химических элементов. Именно с него и началось образование планеты.

Спутники Юпитера и его кольцо

Сведения о Юпитере и его спутниках существенно пополнились благодаря пролету возле планеты нескольких автоматических космических аппаратов. Общее число известных спутников подскочило с 13 до 16. Двое из них - Ио и Европа - размером с нашу Луну, а другие две - Ганимед и Каллисто - превзошли по диаметру ее в полтора раза.

Владения Юпитера довольно обширны: восемь внешних спутников настолько удалены от него, что их нельзя было бы наблюдать с самой планеты невооруженным глазом. Происхождение спутников загадочно: половина из них движется вокруг Юпитера в обратную сторону (по сравнению с обращением других 12 спутников и направлением суточного вращения самой планеты).

Спутники Юпитера - это интереснейшие миры, каждый со своим “лицом” и историей, которые открылись нам только в космическую эру.

Благодаря космическим станциям “Пионер”, получила непосредственное подтверждение прежняя мысль о существовании вокруг Юпитера разряженного газо-пылевого кольца наподобие знаменитого кольца Сатурна.

Основное кольцо Юпитера отстоит от планеты на один радиус и простирается в ширину на 6 тыс. км. и имеет толщину в 1 км. Один из спутников обращается по внешней кромке этого кольца. Однако еще ближе к планете, почти достигая ее облачного слоя, располагается система значительно менее плотных “внутренних” колец Юпитера.

Увидеть кольцо Юпитера с Земли практически не возможно: оно очень тонкое и постоянно повернуто к наблюдателю ребром из-за малого наклона оси вращения Юпитера к плоскости его орбиты.

Когда давление атмосферы Юпитера достигнет давления земной атмосферы, остановимся и осмотримся. Наверху видно обычное голубое небо, вокруг клубятся густые белые облака сконденсированного аммиака. Кроме того, снаружи морозно: - 100° С. Красноватая окраска части юпитерианских облаков говорит о том, что здесь много сложных химических соединений. Разнообразные химические реакции в атмосфере инициируются солнечным ультрафиолетовым излучением, мощными разрядами молний (гроза на Юпитере должна быть впечатляющим зрелищем!), мощность которых на три порядка превышает земные, а также полярные сияния, а также теплом, идущим из недр планеты.

Атмосфера Юпитера состоит из водорода (81 % по числу атомов и 75 % по массе) и гелия (18 % по числу атомов и 24 % по массе). На долю остальных веществ приходится не более 1 %. В атмосфере присутствуют метан, водяной пар, аммиак; имеются также следы органических соединений, этана, сероводорода, неона, кислорода, фосфена, серы. Внешние слои атмосферы содержат кристаллы замороженного аммиака. Из этой химической «каши» трудно выбрать главных претендентов на роль оранжевого красителя атмосферы: это могут быть соединения фосфора, серы или органические соединения.

Следующий ярус облаков состоит из красно-коричневых кристаллов гидросульфида аммония при температуре - 10° С.

Водяной пар и кристаллы воды образуют более нижний ярус облаков при температуре 20° С и давлении в несколько атмосфер - почти над самой поверхностью океана Юпитера. (Хотя некоторые модели допускают наличие и четвертого яруса облаков - из жидкого аммиака.)

Толщина атмосферного слоя, в котором возникают все эти удивительные облачные структуры, - 1000 км. Темные полосы и светлые зоны, параллельные экватору, соответствуют атмосферным течениям разного направления (одни отстают от вращения планеты, другие его опережают). Скорости этих течений - до 100 м/с.

На границе разнонаправленных течений образуются гигантские завихрения. Особенно впечатляют Большое Красное Пятно - колоссальный атмосферный вихрь. Неизвестно когда он возник, но в телескопы он наблюдается уже 300 лет.

Последние исследования показывают что, чем дальше планета от Солнца, тем менее турбулентная ее атмосфера, тем менее интенсивно происходит теплообмен между соседними областями и рассеивается меньше энергии. В атмосфере больших планет физические процессы таковы, что энергия из отдельных мелких областей переносится в более крупные и скапливается затем в глобальные воздушные структуры - зональные потоки. Эти потоки и являются поясами облаков, которые можно разглядеть даже в небольшой телескоп. Соседние потоки движутся в противоположных направлениях. Их цвет может слегка отличаться в зависимости от химического состава. Цветные облака находятся в самых высоких слоях Юпитера (их глубина составляет около 0,1-0,3% радиуса планеты). Происхождение их окраски остается тайной, хотя, по-видимому, можно утверждать, что она связана со следовыми составляющими атмосферы и свидетельствует о происходящих в ней сложных химических процессах.

Большое красное пятно

планета юпитер космический спутник

Большое красное пятно (БКП) -- атмосферное образование на Юпитере, самая заметная особенность на диске планеты, наблюдаемая уже почти 350 лет. БКП было открыто Джованни Кассини в 1665 году. Деталь, отмеченная в записях Роберта Гука 1664 года, также может быть идентифицирована как БКП. До полёта «Вояджеров» многие астрономы полагали, что пятно имеет твёрдую природу.

БКП представляет собой гигантский ураган-антициклон, размерами 24-40 тыс. км в длину и 12-14 тыс. км в ширину (существенно больше Земли). Размеры пятна постоянно меняются, общая тенденция -- к уменьшению; 100 лет назад БКП было примерно в 2 раза больше. По его длине могли бы разместиться 3 планеты размером с Землю.

Пятно расположено примерно на 22° южной широты и перемещается параллельно экватору планеты. Кроме того, газ в БКП вращается против часовой стрелки с периодом оборота около 6 земных суток. Скорость ветра внутри пятна превышает 500 км/ч.

Верхний слой облаков БКП находится примерно на 8 км выше верхней кромки окружающих облаков. Температура пятна несколько ниже прилегающих участков.

Красный цвет БКП пока ещё не нашёл однозначного объяснения. Возможно, такой цвет придают пятну химические соединения, включающие фосфор. Помимо БКП на Юпитере имеются и другие «пятна-ураганы», меньшие по размерам. Они могут иметь белый, коричневый и красный цвет и существовать десятки лет (возможно и дольше). Пятна в атмосфере Юпитера зафиксированы как в южном, так и в северном полушарии, но устойчивые, существующие длительное время имеются почему-то только в южном полушарии. Ввиду разницы скоростей течений атмосферы Юпитера иногда происходят столкновения ураганов.

Юпитера вошёл зонд с КА «Галилей». На зонде были получены важные данные о струк-туре облачного слоя Юпитера и химическом составе его атмо-сферы. Атмосфера Юпитера в основном состоит из водорода и гелия. Причём гелия оказалось заметно меньше, чем в пер-вичном составе Солнца . Объясняется это тем, что гелий как более тяжёлый осаждается в нижние слои атмосферы. На до-лю остальных элементов остаётся только 1% по массе. Угле-рода и серы оказалось в 2—3 раза больше, чем в составе Солн-ца. Результаты «Галилея» показывают, что температура ядра у Юпитера, по-видимому, не менее 20 000 K.

Полосы

Европа

Уже первые снимки с «Вояджера» привлекли внима-ние к Европе — спутнику Юпитера. На Европе была обнаружена густая сеть пересекающихся линий. Более подробное изучение поверхно-сти Европы, проведённое, в частности, АМС «Галилей», пока-зало, что поверхность Европы представляет собой гигантский ледяной покров, разбитый многочисленными трещинами. Тол-щина покрова пока неизвестна. По разным оценкам, она со-ставляет от 10 до 20 км. Правда, в последнее время считает-ся, что толщина ледяного покрова существенно меньше.

Несколько лет назад было обнаружено, что в трещинах на-блюдается движение огромных ледяных глыб, что интерпре-тируется как признак наличия на Европе жидкой воды. На-личие жидкой воды является необходимым условием сущест-вования жизни . Однако никаких исследований, которые мог-ли бы подтвердить или опровергнуть это предположение, про-вести в настоящее время невозможно.

Самое близкое расстояние от Юпитера до Земли - 630 млн. км. Масса Юпитера более чем в 300 раз больше массы Земли.

Полный оборот Юпитера вокруг оси - 9h55m.

На поверхности видны разноцветные полосы, структура которых постоянно трансформируется, но общий характер сохраняется.

Линейная скорость перемещения поверхностных облачных масс на экваторе - 40 000 км/ч.

Ось магнитного поля Юпитера наклонена на 10 градусов к оси вращения. Магнитное поле вращается равномерно, с периодом 9часов 55 мин. Это указывыает на почти твёрдый характер вращения планеты под слоем облаков.

Сила тяжести на поверхности в 2,6 раза больше земной.

Средняя плотность Юпитера - 1,34 г/см 3 . Это свидетельствует о том, что планета состоит в основном из лёгких газов, главным образом - водорода и гелия.

Юпитер имеет протяжённую атмосферу. Интересным её объектом является Большое Красное пятно, открытое в 1665 году Кассини.

Протяжённость пятна от 15 000 до 50 000 км. Временами оно становится ярче, временами почти пропадает.

Пятно постоянно дрейфует в атмосфере планеты. В первые годы после открытия оно было очень ярким, с тех пор яркость постепенно падает. Вероятно, пятно со временем затухает. Исследования Галилео показали, что пятно лежит выше и более холодное, чем окружающие облака. Подобные структуры замечены на Сатурне и Нептуне, но остаётся непонятно, как они могут существовать столь долгое время.

Юпитер имеет такой большой диаметр, какой только может иметь газовая планета. Если бы ему добавили ещё массу, он бы увеличился ненамного в размерах.

Для того, чтобы стать звездой, Юпитеру понадобилось в 80 раз больше массы, чем он имеет.

Атмосфера Юпитера состоит в основном из водорода (90%) и гелия (10%). Обнаружены также аммиак (0,01%) и метан (0,07%), вода, окись углерода, фосфин, циан, этан, ацетилен. Остальных элементов очень мало. Вода вымерзла, сохранившись в газообразном состоянии в малых количествах.

Температура в атмосфере с высотой быстро падает. От -113 0 С при давлении 1 атм. до -160 0 С при давлении 0,03 атм.

Генерация тепла в недрах Юпитера и его собственное тепловое излучение превышает в 2 раза поток энергии, поступающий от Солнца.

На Юпитере отсутствует твёрдая поверхность и какой-то рельеф. Тепло из недр выносится путём вертикальной конвекции, порождающей турбулёнтные вихри.

В экваториальной зоне (от +9 0 до -9 0) течения направлены строго с запада на восток. Дуют западные ветры со скоростью 100 м/с. Вблизи широт от +20 0 до -20 0 ветры дуют с востока на запад со скоростью около 50 м/с. Между основными течениями существуют вихри и струи.

Исследования «Галилео» показали, что ветры в атмосфере могут значительно превышать 100 м/с и вызываются внутренним источником тепла. Ветры носят более характер реактивных струй, чем вихрей и торнадо.

Большое Красное пятно увлекается на запад вместе с южной тропической зоной. Оно не связано с глубокими слоями планеты. В нём наблюдается подъём вещества из верхних областей и растекание его от центра. Этим объясняется низкая температура пятна и антициклоническое вращение в нём, т.е. против часовой стрелки в южном полушарии с периодом около 7 суток.

Помимо Красного пятна наблюдаются белые овалы, которые представляют собой такие-же возмущения, но появились позже, в 1939 году, и в настоящее время сжимаются.

Облака атмосферы состоят в основном из аммиака. Температура от -100 0 до

160 0 С. При давлении 1 атм. аммиак кипит при -33 0 С и плавится при -78 0 С. Метан кипит при -161 0 С и плавится при -184 0 С, поэтому существование его в жидком или кристаллическом виде невозможно.

Атмосфера Юпитера очень глубокая и, возможно, включает целую планету.

На большой глубине внутри Юпитера, давление настолько большое, что атомы водорода разрушаются и электроны освобождаются. Возникающие в результате этого атомы состоят из пустых протонов. Это состояние называется металлическим водородом. Температура в ядре достигает 30 000 К, а давление больше 1 млн. бар. Высокая температура ядра существует благодаря механизму Келвина – Гельмгольца, т.е. из-за медленного гравитационного сжатия планеты.

В полярных облаках Юпитера наблюдается явление, подобное земному северному сиянию. Эти явления связаны с веществом, падающим из спутника Ио по спиральным линиям магнитного поля в атмосферу Юпитера.

Облака простираются в интервале высот 12 км. Атмосфера Юпитера окрашена различными цветами. Устойчивые атмосферные составляющие не могут так окрашивать атмосферу, они бы стремились постепенно выравнять окраску. Значит из глубины постоянно поступают окрашенные металлические соединения, которые затем либо оседают, либо подвергаются химическим реакциям в атмосфере. Р. Вилд считает, что окраска Юпитера обусловлена натрием, а Г. Юри связывает окраску облаков с органическими молекулами. К. Саган и С. Миллер, пропуская через смесь газов, моделирующую атмосферу Юпитера, искровые разряды, получили ярко окрашенные органические молекулы. Космические аппараты “Вояджер-1 и 2” зарегистрировали мощные вспышки молний на Юпитере, сравнимые с сильнейшими грозовыми разрядами на Земле. Однако, никакой зависимости между молниями и цветом пока не найдено.

Исследования «Галилео» показали, что молнии на Юпитере вспыхивают в 10 раз реже, чем на Земле. Органических молекул почти не обнаружено. Химический состав Юпитера близок к протопланетному облаку.

Юпитер является полупериодическим радиоисточником. К. Шайн из Австралии открыл, что радиоизлучение Юпитера должно быть связано с определёнными районами поверхности планеты. Источники на поверхности вращаются с периодом 9ч. 55 мин. 30 сек. Энергия всплесков радиоизлучения Юпитера соответствует энергии миллиарда одновременных вспышек молний на Земле.

Радиоизлучение может быть связано с внутренней частью магнитосферы и движением спутника Ио.

Юпитер обладает огромным магнитным полем. Его магнитосфера простирается на расстояние 650 миллионов км (дальше орбиты Сатурна!). Галилео обнаружил, что окружающая среда около Юпитера содержит высоко энергичные частицы, пойманные магнитным полем. Эта "радиация" подобна, но намного более интенсивна чем в радиационных поясах Ван Аллена около Земли. Атмосферные исследования Галилео обнаружили новый интенсивный лучевой пояс между кольцом Юпитера и высшими атмосферными слоями. Этот новый пояс - приблизительно в 10 раз более сильный, чем пояса радиации Ван Аллена. В этом новом поясе были найдены высокоэнергичные ионы гелия неизвестного происхождения.

Головная ударная волна солнечного ветра на дневной стороне находится на расстоянии 100 радиусов Юпитера или 0,05 а.е.

Внутреннее строение Юпитера до конца неизвестно. Скорее всего его недра находятся в жидком состоянии, за исключением небольшого каменного ядра. Жидкий водород на глубине 25 000 км металлизируется. Выше этой границы расположена зона молекулярного водорода, ниже металлического.

Столкновение с кометой - В 1994 году на Юпитер упали осколки кометы Шумейкера - Леви. Явление наблюдалось с Земли и космическим телескопом им. Хаббла. После падения кометы Шумейкера - Леви, на широте падения осколков образовался широкий пояс, в котором температура на 5 - 7 К ниже чем обычно.

Причины могут быть следующие:

Охлаждение через эффективное инфракрасное излучение молекул аммиака, синильной кислоты, воды и других веществ, выброшенных в атмосферу во время катастрофы.

Обычное термическое охлаждение дыма, образовавшегося в стратосфере

при столкновении и переизлучение им солнечного света обратно в космос.

14.2 Спутники и кольцо Юпитера .

Кольцо. “Вояджер-1” в 1979 году открыл у Юпитера кольцо. Внешний край кольца находится у орбиты самого малого 14 спутника, а внутренний - на расстоянии 5500 км от видимой границы облаков. Ширина наиболее яркой части кольца достигает 800 км. Толщина до 1 км. Кольцо Юпитера сильно отличается от кольца Сатурна. Оно состоит из очень маленьких частиц. Составлено из частиц пыли меньше чем 10 микронов в диаметре.

Происхождение кольца вероятно связано с бомбардировкой микрометеоритами маленьких спутников Юпитера, расположенных внутри кольца.

Возможно, что оно постоянно пополняется за счёт частиц космической пыли.

Кольца Юпитера и его спутники существуют внутри интенсивного лучевого пояса электронов и ионов, которые улавливаются магнитным полем планеты.

Спутники . Первые четыре спутника Юпитера были открыты Галилеем в 1610 году. Сейчас известно уже более 60-ти.

Орбиты шести внутренних спутников почти круговые и располагаются в экваториальной плоскости планеты. Каждая последующая орбита лежит в 1,7 раза дальше предыдущей. Восемь внешних спутников очень маленькие. Их орбиты образуют две группы по четыре спутника. Первая группа располагается на расстоянии 12 млн. км. от Юпитера, движутся они в прямом направлении. Спутники второй группы находятся вдвое дальше, движение их по орбитам обратное. Это спасает их от притяжения Солнца, которое может действовать на них с силой вдвое большей чем у Юпитера, всследствие большой удалённости спутников (0,2 а.е.). Орбиты этих спутников сильно вытянуты (е = 0,4), наклонены к орбите Юпитера под углом 30 0 и постоянно меняются из-за солнечных возмущений.

Три внутренних спутника Ио, Европа, Ганимед движутся почти в полном резонансе с периодами обращения 1.77, 3.55, 7.16 земных суток, находящимися в соотношении 1:2:4. В небесной механике такое расположение считается устойчивым. Все внутренние спутники обращены к Юпитеру одной и той же стороной.

Ио . Радиус 1815 км. Ещё до полётов “Вояджеров” учёные предсказали, что спутник Ио очень сильно нагревается вследствие приливных эффектов. Нагрев Ио должен быть в 20 раз больше чем Европы и превосходить в 10 раз нагрев Луны вследствие распада радиоактивных элементов. Предполагалось, что внутри Ио должна быть большая расплавленная область. Эти предположения сразу же подтвердились. “Вояджер-1” открыл на Ио 8 действующих вулканов. Вулканические выбросы поднимаются на высоту 7- - 280 км. над поверхностью, что требует скорости выброса 1 км/с. Выбросы состоят из двуокиси серы SO 2 .

Образование вулканов связано с расплавлением силикатных масс в недрах Ио, содержащих небольшое железное ядро. Это подтверждается средней плотностью Ио - 3,5 г/см 3 . Под видимой корой лежит неоднородный подкорковый силикатный слой, который в очень немногих областях малой протяжённости выходит на поверхность в виде гор высотой до 10 км. Под верхним слоем твёрдой серы, смешанной с SO 2 лежит океан расплавленной серы (t = 120 0 С, давление 40 бар). Потоки в расплавленных недрах Ио, так же как и в Земле, создают тепловые очаги, в которых образуются вулканы. Интенсивные красный, оранжевый, жёлтый, коричневый, чёрный и белый цвета на Ио подтверждают эти представления. Ударные кратеры с поперечником более 600 м не обнаружены, значит, скорость отложений на поверхности должна превышать 0,1 мм/год и определяться выбросами, потоками, поверхностной эррозией, связанной с вулканической активностью.

Возраст свежих разноцветных потоков меньше 1000 лет.

Европа. Радиус 1569 км. Поверхность Европы покрыта лабиринтом запутанных тонких линий и полос, похожих на марсианские “каналы”. Длина некоторых достигает тысяч километров, ширина 20-40 км. Скорее всего это чем-то заполненные трещины. Самые высокие детали возвышаются на высоту всего 40 м. Она напоминает исцарапанный оранжевый шар. Почти полное отсутствие ударных кратеров говорит о том, что их следы сразу же исчезают. Внешняя кора скорее всего ледяная до глубин 100 км. Средняя температура поверхности около -150 0 С. Недра спутника должны быть горячими, химический состав похожий на Ио. Плотность несколько меньше чем у Ио - 3,0 г/см 3 вызвана наличием ледяной коры. Множество трещин - результат снятия напряжений, возникающих под поверхностью.

Недавние наблюдения с помощью космического телескопа им. Хаббла позволили обнаружить на Европе разреженную атмосферу, состоящую из молекулярного кислорода. Её плотность очень мала. Солнечный свет, космические лучи и микрометеориты выбивают с поверхности Европы молекулы воды, которые под действием ультрафиолетового излучения распадаются на атомы водорода и кислорода. Атомы водорода сразу же покидают атмосферу, а атомы кислорода объединяются в энергетически более выгодные молекулы.

Ганимед . Самый крупный и массивный из всех спутников. Радиус 2631 км. Средняя плотность 1,9 г/см 3 . Он почти на половину состоит из воды или льда. Средняя температура поверхности - 130 0 С. Тёмные области Ганимеда усеяны кратерами диаметром в несколько десятков километров.

На спутнике существует огромная система хребтов. Самым интересным объектом поверхности являются пучки длинных параллельных борозд. Они покрывают значительную часть площади спутника. Эти образования современной наукой не объяснены.

Каллисто . По размерам это третий спутник в солнечной системе. Радиус 2410 км. Но плотность самая маленькая 1,8 г/см 3 . Поверхность Каллисто на невидимой с Юпитера стороне очень насыщена кратерами. На обращённой к Юпитеру стороне видна огромная многокольцевая структура с яркой центральной областью поперечником около 300 км. От 8 до 10 кольцевых гребней окружают центр до расстояния примерно 1500 км. В центральной области Каллисто кратеров гораздо меньше, чем на остальной поверхности. Значит эта область моложе.

Парадоксально то, что при малой плотности Каллисто должна содержать больше воды, чем Ганимед, но при этом сохраняет древние ударные кратеры. Низкое альбедо Каллисто говорит о примеси в коре пыли. Температура поверхности -120 0 С или выше. Эта температура всё же низка, чтобы образовать атмосферу из водяного пара.

Характеристики планеты:

  • Расстояние от Солнца: ~ 778.3 млн км
  • Диаметр планеты: 143 000 км *
  • Сутки на планете: 9ч 50мин 30с **
  • Год на планете: 11,86 лет ***
  • t° на поверхности: -150°C
  • Атмосфера: 82% водород; 18% гелий и незначительные следы других элементов
  • Спутники: 16

* диаметр по экватору планеты
** период вращения вокруг собственной оси (в земных сутках)
*** период обращения по орбите вокруг Солнца (в земных сутках)

Юпитер - пятая от Солнца планета. Расположена она на расстоянии 5,2 астрономических лет от Солнца, это примерно 775 млн км. Планеты Солнечной системы разделяются астрономами на две условные группы: планеты земного типа и газовые гиганты. Самой крупной планетой из группы газовых гигантов является Юпитер.

Презентация: планета Юпитер

Размеры Юпитера превышают размеры Земли в 318 раз, и будь он ещё больше примерно раз в 60, то имел бы все шансы стать звездой за счёт спонтанной термоядерной реакции. Атмосфера планеты примерно на 85% состоит из водорода. Остальные 15% - это в основном гелий с примесями аммиака и соединений серы и фосфора. Также в атмосфере Юпитера содержится метан.

С помощью спектрального анализа было установлено, что кислорода на планете нет, следовательно, отсутствует вода - основа жизни. По другой гипотезе лёд в атмосфере Юпитера всё-таки имеется. Пожалуй, ни одна планета нашей системы не вызывает столько споров в научном мире. Особенно много гипотез связано с внутренним строением Юпитера. Последние исследования планеты с помощью космических аппаратов позволили создать модель, позволяющую с высокой степенью достоверности судить о ее строении.

Внутреннее строение

Планета представляет собой сфероид, достаточно сильно сжатый с полюсов. Она обладает сильным магнитным полем, которое уходит на миллионы километров за орбиту. Атмосфера представляет собой чередование слоёв с различными физическими свойствами. Учёные предполагают наличие у Юпитера твёрдого ядра размером 1 - 1,5 диаметра Земли, но гораздо более плотного. Его наличие пока не доказано, но и не опровергнуто.

Атмосфера и поверхность

Верхний слой атмосферы Юпитера состоит из смеси газов водорода и гелия и имеет толщину 8 - 20 тыс. км. В следующем слое, толщина которого 50 - 60 тыс. км, из-за повышения давления газовая смесь переходит в жидкое состояние. В этом слое температура может достигать 20 000 С. Ещё ниже (на глубине 60 - 65 тыс. км.) водород переходит в металлическое состояние. Этот процесс сопровождается увеличением температуры до 200 000 С. При этом давление достигает фантастических величин в 5 000 000 атмосфер. Металлический водород - это гипотетическое вещество, характеризующееся наличием свободных электронов и проводящее электрический ток, как это свойственно металлам.

Спутники планеты Юпитер

У самой большой планеты в Солнечной системе есть 16 естественных спутников. Четыре из них, о которые говорил еще Галилей имеют свой уникальный мир. Один из них спутник Ио имеет удивительный пейзажи скалистых пород с настоящими вулканами на которых, изучавший спутники аппарат "Галилео" запечатлел извержение вулкана. Самый крупный в Солнечной системе спутник Ганимед, хоть и уступает в диаметре спутникам Сатурна Титану и Нептуна Тритону имеет ледяную кору, которая покрывает поверхность спутника толщиной 100 км. Есть предположение, что под толстым слоем льда находится вода. Также, о существовании подземного океана выдвигается гипотеза и на спутнике Европа, который тоже состоит из толстого слоя льда, на снимках отчетливо прослеживаются разломы, словно от айсбергов. А самый древний обитатель Солнечной системы может считаться по праву спутник Юпитера Калисто, на его поверхности кратеров больше, чем на любой другой поверхности других объектов Солнечной системы, да и поверхность не сильно претерпела изменений за последний миллиард лет.